Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A=7+7^2+7^3+7^4+...+7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\)
\(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)
\(A=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)
\(A=7.400+7^5.400+...+7^{4n-3}.400\)
\(A=400.\left(7+7^5+..+7^{4n-3}\right)\)luôn chia hết cho 400
A=7+72+74+74+...+74n-3+74n-2+74n-1+74n
A=(7+72+73+74)+...+(74n-3+74n-2+74n-1+74n)
A=7(1+7+72+73)+...+74n-3(1+7+72+73)
A=7.400+75.400+...+74n-3.400
A=400.(7+75+..+74n-3)luôn chia hết cho 400
Bài 1 :
\(8^7-2^{18}\)
\(=\left(2^3\right)^7-2^{18}\)
\(=2^{21}-2^{18}\)
\(=2^{18}\left(2^3-1\right)\)
\(=2^{18}\cdot7\)
\(=2^{17}\cdot2\cdot7\)
\(=2^{17}\cdot14⋮14\left(đpcm\right)\)
a) Ta có \(8^2=64\)
\(8^4=8^2=64^2=...6\) (tận cùng là 6)
=> \(\left(8^4\right)^n=\left(...6\right)^n=...6\)
Ta có: \(8^{102}=8^{100}.8^2=\left(8^4\right)^{25}.8^2=\left(...6\right).64=...4\)
Tương tự: \(\left(2^4\right)^n=16^n=...6\)
=> \(2^{102}=2^{100}.2^2=\left(2^4\right)^{25}.2^2=\left(...6\right).4=...4\)
Vậy \(8^{102}\) và \(2^{102}\) đều có chữ số tận cùng là 4 => Hiệu của chúng có tận cùng là 0 => Hiệu chia hết cho 10
b) \(2^{100}=\left(2^4\right)^{25}=16^{25}=...6\)
c) \(7^{1991}=\left(7^4\right)^{497}.7^3\) (vì 1991 = 4.497 + 3
\(=\left(...1\right)^{479}.7^3=\left(...1\right).343=...3\)
jEm có cách khác cô ạ !
Bài 1 .
Giải : Ta thấy một số có tận cùng bằng 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 6 ( vì nhân hai số có tận cùng bằng 6 với nhau , ta được số tận cùng bằng 6 ) . Do đó ta biến đổi như sau :
8102 = ( 84 )25 . 82 = ( ...6 )25 . 64 = ( ...6 ) . 64 = ...4,
2102 = ( 24 )25 . 22 = 1625 . 4 = ( ...6 ) . 4 = ...4 .
Vậy 8102 - 2102 tận cùng bằng 0 nên chia hết cho 10.
Ta có nhận xét : Để tìm chp số tận cùng của một lũy thừa , ta chú ý rằng :
- Các số có tận cùng bằng 0 , 1 , 5 , 6 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 0 , 1 , 5 , 6 ;
- Các số có tận cùng bằng 2 , 4 , 8 nâng lên lũy thừa 4 thì được số tận cùng bằng 6 ;
- Các số có tận cùng bằng 3 , 7 , 9 nâng lên lũy thừa 4 thì được số tận cùng bằng 1 .
Bài 2 .
Giải : Chú ý rằng : 210 = 1024 , bình phương của số có tận cùng bằng 24 thì tận cùng bằng 76 , số có tận cùng bằng 76 nâng lên lũy nào ( khác 0 ) cũng tận cùng 76 . Do đó :
2100 = ( 210 )10 = 102410 = ( 10242 )5 = ( ...76 )5 = ...76
Vậy hai chữ số tận cùng của 2100 là 76.
Bài 3 .
Giải : Ta thấy : 74 = 2401 , số tận cùng bằng 01 nâng lên lũy thừa nào cũng tận cùng bằng 01 . Do đó :
71991 = 71988 . 73 = ( 74 )497 . 343 = ( ...01 )497 . 343
= ( ...01 ) . 343 = ...43
Vậy 71991 có hai chữ số tận cùng là 43 .
Ta có nhận xét : Để tìm hai chữ số tận cùng của một lũy thừa , cần chú ý đến những số đặc biệt :
- Các số có tận cùng bằng 01 , 25 , 76 nâng lên lũy thừa nào ( khác 0 ) cũng tận cùng bằng 01 , 25 , 76 ;
- Các số 320 ( hoặc 815 ) , 74 , 512 , 992 có tận cùng bằng 01 ;
- Các số 220 , 65 , 184 , 242 , 684 , 742 có tận cùng bằng 76 ;
- Số 26n ( n > 1 ) có tận cùng bằng 76.
76 + 75 - 74 = 74 ( 72 + 7 - 1) = 74 . 55
Vì 74 . 55 chia hết cho 55
Nên 76 + 75 - 74 chia hết cho 55
<=>\(7^4.\left(7^2+7-1\right)\)
<=>\(7^4.55\)
vì \(7^4\)là số tự nhiên
nên\(7^4.55⋮55\)
Vậy\(7^6+7^5-7^4⋮55\left(đpcm\right)\)
- ta có \(7^{2k}\)với k lẻ thì sẽ có tận cùng bằng 9 nên 7^6 có tận cùng bằng 9
- có \(7^{4k+1}\)có tận cùng bằng 7 nên 7^5 có tận cùng =7
- \(7^{2k}\)với k chăn thì có tận cùng bằng 1
- tóm lại ta có \(7^6+7^5-7^4\)=.....9+.....7-......1=......5 vì số này có tận cùng bằng 5 nên chia hết cho 5
- k mình nha
7^6+ 7^5-7^4=7^4(7^2+7-1)=7^4(49+7-1)=7^4.55 chia hết cho 55
=> đpcm
\(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)
\(\Rightarrow7^6+7^5-7^4⋮55\)
Chúc em học tốt!!!
___________________________Hướng dẫn_____________________________________
\(7^6+7^5-7^4=7^4.49+7^4.7-7^4=7^4\left(49+7-1\right)=7^4.55⋮55\left(đpcm\right)\)