K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(79^{m+1}-79^m=79^m\left(79-1\right)=79^m.78.\) chia hết cho 78 

Vậy \(79^{m+1}-79^m\) chia hết cho 78 (m thuộc N)

1 tháng 8 2016

\(79^{m+1}-79^m=79.79^m-79^m\)

\(=79^m.\left(79-1\right)\)

\(=78.79^m\)chia hết cho 78.

Chúc em học tốt^^

3 tháng 7 2017

Bài 1:

a, \(77^{n+1}=77^n.77+77^n\)

\(=77^n\left(77+1\right)=77^n.78⋮78\)

\(\Rightarrowđpcm\)

b, \(n^2\left(n-1\right)+\left(n^2-n\right)\)

\(=n^2\left(n-1\right)+n\left(n-1\right)\)

\(=\left(n^2+n\right)\left(n-1\right)=n\left(n+1\right)\left(n-1\right)\)

Vì 3 số liên tiếp chia hết cho 2, 3

Mà ( 2; 3 ) = 1

\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮6\)

\(\Rightarrowđpcm\)

c, tương tự

Bài 2:

a, \(x+y=xy\)

\(\Leftrightarrow x-xy+y=0\)

\(\Leftrightarrow x\left(1-y\right)-1+y=-1\)

\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1\\1-y=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x+1=-1\\1-y=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

Vậy x = y = 2 hoặc x = y = 0

b, tương tự

5 tháng 7 2017

Bài 2:

a, \(x+y=xy\)

\(\Rightarrow x+y-xy=0\)

\(\Rightarrow-xy+x+y-1=-1\)

\(\Rightarrow-x.\left(y-1\right)+\left(y-1\right)=-1\)

\(\Rightarrow\left(y-1\right).\left(1-x\right)=-1\)

\(\Rightarrow y-1;1-x\inƯ\left(-1\right)\)

\(\Rightarrow y-1;1-x\in\left\{-1;1\right\}\)

Ta có bảng sau:

\(1-x\) -1 1
\(y-1\) 1 -1
x 2 0
y 2 0
Chọn or loại Chọn Chọn

Vậy.............

b, \(xy-x+2\left(y-1\right)=13\)

\(\Rightarrow x.\left(y-1\right)+2\left(y-1\right)=13\)

\(\Rightarrow\left(y-1\right)\left(x+2\right)=13\)

\(\Rightarrow y-1;x+2\inƯ\left(13\right)\)

\(\Rightarrow y-1;x+2\in\left\{-13;-1;1;13\right\}\)

Ta có bảng sau:

\(x+2\) -13 -1 1 13
\(y-1\) -1 -13 13 1
x -15 -3 -1 11
y 0 -12 14 2
Chọn or loại Chọn Chọn Chọn Chọn

Vậy.............

Chúc bạn học tốt!!!

5 tháng 7 2017

B1:

a) \(77^{n+1}+77^n=77^n.77+77^n=77^n.78\) \(⋮\) \(78\)

b) \(n^2\left(n-1\right)+\left(n^2-n\right)\)

= \(n^2\left(n-1\right)+n\left(n-1\right)\)

= \(\left(n-1\right).n\left(n+1\right)\)

Dấu hiệu chia hết cho 6 là tích của 3 số liên tiếp sẽ chia hết cho 6. Ta thấy KQ có tích \(\left(n-1\right).n\left(n+1\right)\) là 3 số liên tiếp nên \(\left(n-1\right).n\left(n+1\right)\) \(⋮\) 6

c) \(\left(2n+1\right)^3-\left(2n+1\right)\)

= \(\left(2n+1\right)\left[\left(2n+1\right)^2-1\right]\)

= \(\left(2n+1\right)\left(2n+1-1\right)\left(2n+1+1\right)\)

= \(\left(2n+1\right)^2.2n.\left(2n+2\right)\)

= \(\left(2n+1\right)^2.4n.\left(n+1\right)\)

Ta thấy tích trên có một số hạng là 4n \(⋮\) 2 và 4

Dấu hiệu chia hết cho 8 là chia hết cho 2 và 4

Nên \(\left(2n+1\right)^2.4n.\left(n+1\right)\) \(⋮\) 8

Hay \(\left(2n+1\right)^3-\left(2n+1\right)\) \(⋮\) 8

12 tháng 8 2016

a) 20062006 - 20062005 = 20062005 x 2006 - 20062005 = 20062005 x (2006 - 1) = 20062005 x 2005 chia hết cho 2005  => 20062006 - 20062005 chia hết cho 2005.

b) 79m+1 - 79= 79m x 79 - 79m = 79x (79 - 1) = 79m x 78 chia hết cho 78  => 79m+1 - 79 chia hết cho 78.

c) 25+ 513 = (52)7 + 513 = 514 + 513 = 512 x 5 x (5 + 1)  = 512 x 5 x 6 = 512 x 30 chia hết cho 30  => 257 + 513 chia hết cho 30.

d) 106 - 57 = (2 x 5)6 - 57 = 26 x 56 - 57 = 56 x (26 - 5) = 5x (64 - 5) = 56 x 49 chia hết cho 49  => 106 - 57 chia hết cho 49.

e) 710 - 79 - 7= 78 x (72 - 7 - 1) = 78 x (49 - 7 - 1) = 78 x 41 chia hết cho 41  => 710 - 79 - 78 chia hết cho 41.

f)817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324 x 32 x (32 - 3 - 1) = 324 x 9 x 5 = 324 x 45 chia hết cho 45  => 817 - 279 - 913 chia hết cho 45.

12 tháng 8 2016

Cảm ơn

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

25 tháng 7 2018

1, Câu hỏi của Trịnh Hoàng Đông Giang - Toán lớp 8 - Học toán với OnlineMath

2, \(2n\left(16-n^4\right)=2n\left(1-n^4+15\right)=2n\left(1-n^2\right)\left(1+n^2\right)+30n=2n\left(1-n\right)\left(1+n\right)\left(n^2-4+5\right)+30n\)

\(=-2n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+10n\left(n-1\right)\left(n+1\right)=-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)\)

Vì n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp nên chia hết cho 3;5 

Mà (3,5) = 1 

=> n(n-1)(n+1)(n-2)(n+2) chia hết cho 15 

=> -2n(n-1)(n+1)(n-2)(n+2) chia hết cho 2.15 = 30 (1)

Vì n(n-1)(n+1) là tích 3 số nguyên liên tiếp nên chia hết cho 3

=>10n(n-1)(n+1) chia hết cho 10.3 = 30 (2)

Từ (1) và (2) => \(-2n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+10n\left(n-1\right)\left(n+1\right)⋮30\) hay \(2n\left(16-n^4\right)⋮30\left(đpcm\right)\)

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

23 tháng 6 2015

ta có a=5k+3

Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)