K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2023

\(5^{27}=5^{3\cdot9}=125^9\\ 2^{63}=2^{7\cdot9}=512^7=128^9\\ 5^{28}=5^{7\cdot4}=625^7\)

Vì 1259 < 1289 => 527 < 263 

Vì 5127<6257 => 263 < 528

=>  527 < 263 < 528

24 tháng 9 2015

chứng minh 263 lớn hơn 527 và nhỏ hơn 528

 

21 tháng 10 2016

ta có :

527 = 53.9 = ( 53 )9 = 1259 < 1289 = 27.9 = ( 27 ) 9 = 263

=> 527 < 263 ( 1 )

lại có : 263 < 264 = 216.4 = ( 216 )4 = 655364 < 781254 = 57.4 = ( 57 ) 4 = 528 

=> 263 < 264 < 528

=> 263 < 528 ( 2 )

từ ( 1 ) và ( 2 ) ta thấy :

527 < 263 < 528 

( đpcm )

13 tháng 10 2021

Nguyễn Đức Minh Triết ơi, hãy nhập câu hỏi của bạn vào đây...

19 tháng 2 2016

Ta có: \(5^{27}=\left(5^3\right)^9=125^9\)

          \(2^{63}=\left(2^7\right)^9=128^9\)

Mà \(128^9>125^9\)

=> \(5^{27}<2^{63}\)  (1)

Ta có: \(5^{28}=\left(5^4\right)^7=625^7\)

          \(2^{63}=\left(2^9\right)^7=512^7\)

Mà \(512^7<625^7\)

=> \(2^{63}<5^{28}\)  (2)

Từ (1) và (2):

=> \(5^{27}<2^{63}<5^{28}\left(đpcm\right)\)

3 tháng 8 2017

5^27>5^25=> vô lý

527=(53)9=1259<1289=(27)9=263   (1)

263=(29)7=5127<6257=(54)7=528   (2)

từ (1) và (2) =>đpcm

27 tháng 2 2017

đề sai. có phải là 527<263<528 ko???

10 tháng 4 2019

ta có: \(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}<\frac{1}{2.3}\)

\(\frac{1}{4^2}<\frac{1}{3.4}\)

...............

\(\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)

cộng vế với vế ta được:

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(VP=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}=\frac{n}{n}-\frac{1}{n}=\frac{n-1}{n}<1\)

\(=>VP<1\)

\(\ \)Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<1\left(dpcm\right)\)

10 tháng 4 2019

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

                                                          \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)                 

                                                          \(=1-\frac{1}{n}< 1\left(đpcm\right)\)                     

                                                                                  

                                                                       

6 tháng 5 2016

a) Ta thấy: 1/2^2<1/1.2

              1/3^2<1/2.3

              1/4^2<1/3.4

              …………...

              1/100^2<1/99.100

=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100

Mà 99/100<1 =>  1/2+ 1/32 + 1/4+ ... + 1/1002<1

b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)

 =>A>50/150>1/3 (1)

 Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)

=>A<1/2 (2)

Từ (1) và (2) =>1/3<A<1/2

c) Ta thấy :  1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)

=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2