Chứng minh rằng 4343 – 1717 chia hết cho 10

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
28 tháng 5 2021

\(B=10^n+72n-1\)

\(=10^n-1-9n+81n\)

\(=99...9-9n+81n\)(\(n\)chữ số \(9\))

\(=9\times11...1-9n+81n\)(\(n\)chữ số \(1\))

\(=9\times\left(11...1-n\right)+81n\)(\(n\)chữ số \(1\)

Ta có: \(11...1-n⋮9\)(\(n\)chữ số \(1\)) vì tổng các chữ số của \(11...1\)là \(n\)nên \(11...1\equiv n\left(mod9\right)\).

Do đó \(9\times\left(11...1-n\right)⋮81\Leftrightarrow B⋮81\).

28 tháng 5 2021

mod là gì vậy Đoàn Đức Hà ơi

2 tháng 2 2020

đỉ mẹ, đỉ má, cái lồn, con cặc.

28 tháng 12 2020

giúp mình với

30 tháng 7 2019

\(S=1+4+4^2+...+4^{49}\)

\(4S=4+4^2+...+4^{50}\)

\(4S-S=4^{50}-1\)

\(3S=4^{50}-1\)

\(S=\frac{4^{50}-1}{3}\)

Hc tốt

\(S=1+4+4^2+...+4^{49}\)

\(4S=\left(4+4^2+...+4^{50}\right)\)

\(4S-S=3S=\left(4+4^2+...+4^{50}\right)-\left(1+4+4^2+...+4^{49}\right)=4^{50}-1\)

\(\Rightarrow S=\frac{4^{50}-1}{3}\)

1 tháng 12 2014

4343 có tận cùng là 7 ( 4342*43 = (432)21*43

(...9)21 *43  ta có 921 có tận cùng là 9 nên 9*3=27 nên tận cùng bằng 7

1717có tận cùng là là 7(tuong tự như trên)

suy ra 4343-1717 =...7-...7 bằng ...0 chia hết cho 10

A= 1+2+22+23+.......+298+299     

A= (1+2)+(22+23)+.......+(298+299 )

A=3+22.(1+2)+...+298.(1+2)

A=   3+22.3+...+298.3 

A=3.(22+...+298)

Vid 3 chia hết cho 3 nên A chia hết cho 3

Đơn giản như đang giỡn

HT

28 tháng 10 2021

giúp mình với

7 tháng 12 2017

CM:\(\overline{ab}+\overline{ba}⋮11\)

Ta có :\(\overline{ab}=10a+b\)

\(\overline{ba}=10b+a\)

\(\Rightarrow\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b\)

Mà 11b\(⋮\) 11 kí hiệu là 1

11a \(⋮\) 11 kí hiệu là 2

Từ 1 và 2 \(\Rightarrow\) 10a+b+10b+a chia hết cho 11 (t/chất chia hết của 1 tổng)

\(\Rightarrow\overline{ab}+\overline{ba}⋮11\)

2 tháng 10 2015

 

+ Ta có

\(43^{43}=43^3\left(43^4\right)^{10}\)

\(43^3\) có chữ số tận cùng là 7

\(43^4\) có chữ số tận cùng là 1 => \(\left(43^4\right)^{10}\) có chữ số tận cùng là 1

=> \(43^{43}=43^3.\left(43^4\right)^{10}\) có chữ số tận cùng là 7

+ Ta có

\(17^{17}=17.\left(17^4\right)^4\)

\(17^4\) có chữ số tận cùng là 1 => \(17^{17}=17.\left(17^4\right)^4\) có chữ số tận cùng là 7

=> \(43^{43}-17^{17}\) có chữ số tận cùng là 0 nên chia hết cho 10