K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

 321 + 322 + 323 + 324 + 325 +326 + 327 +  328 + 329  

\(3^{21}.\left(1+3+3^2\right)+3^{24}.\left(1+3+3^2\right)+3^{27}.\left(1+3+3^2\right)\)

\(3^{21}.13+3^{24}.13+3^{27}.13\)

\(13.\left(3^{21}+3^{24}+3^{27}\right)\)

vì   \(13⋮13\) nên \(13.\left(3^{21}+3^{24}+3^{27}\right)⋮13\)

vậy 321 + 322 + 323 + 324 + 325 +326 + 327 +  328 + 329  chia hết cho 13

26 tháng 9 2016

3^21*(1+3+3^2)+3^24*(1+3+3^2)+3^27*(1+3+3^2)=13*321+13*324+13*327=13*(3^21+3^24+3^27) chia hết cho 13

A=(1+5+5^2)+...+5^402(1+5+5^2)=31*(1+5^3+...+5^402) chia hết cho 31

3A-A=3^2009-3   => 2A+3=32009  => n=2009

2*(1+2)+23*(1+2)+...+299(1+2)=3*(2+2^3+...+2^99) chia hết cho 3

29 tháng 10 2018

Ta có \(M=\left(3^1+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{28}+3^{29}+3^{30}\right)\)

\(=3\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{28}.\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{28}\right)⋮13\Rightarrow M⋮13\)

29 tháng 10 2018

M = 31 + 32 + 33 +...+ 328 + 329 + 330

M = ( 31 + 32 + 33) + ...+ ( 328 + 329 + 330 )

M = 3(1 + 3 + 32 ) +...+ 328( 1 + 3 + 32)

M = 3 .13 +...+ 328.13

\(\Rightarrow M⋮13\)(đpcm)

   !!!

13 tháng 10 2017

M = 3[1+3+9] + 3\(^4\)[1+3+9] +...+3\(^{28}\)[1+3+9] = 26.[1+ 3\(^4\)+... 3\(^{28}\)]

do 26 chia hết cho 13 => M chia hết cho 13

28 tháng 9 2016

Ta có: M=3+32+33+...........+328+329+330

=> 3M=32+33+34+...........+329+330+331

Lấy 3M-M ta có: 2M=(32+33+34+.........+330+331)-(3+32+33+............+329+330)

=> 2M=331-3

=> \(M=\frac{3^{31}-3}{2}\)

28 tháng 9 2016

Có điều kiện gì nữa không?

Câu 3: 

a: \(\Leftrightarrow n-1+4⋮n-1\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

b: \(\Leftrightarrow4n+2+1⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)

hay \(n\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow4n-5=13k\left(k\in Z\right)\)

\(\Leftrightarrow n=\dfrac{13k+5}{4}\)