Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: S=32+33+34+...+3101
S=3(3+32+33+34)+35(3+32+33+34)+...+397(3+32+33+34)
S=(3+35+...+39)+(3+32+33+34)= M+120 => Schia hết cho 120
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
A=1+2+22+23+...+2101
A=(1+2+22)+(23+24+25)+...+(299+2100+2101)
A=1.(1+2+22)+23.(1+2+22)+...+299.(1+2+22)
A=1.7+23.7+...+299.7
A=7.(1+23+...+299)
=> A chia hết cho 7
B=3+32+33+...+3150
B=(3+32+33)+...+(3148+3149+3150)
B=3.(3+32+33)+...+3148.(3+32+33)
B=3.39+...+3148.39
B=39.(3+...+3148)
=>B chia hết cho 39
A=1+2+22+23+...+2101
A=(1+2+22)+(23+24+25)+...+(299+2100+2101)
A=1.(1+2+22)+23.(1+2+22)+...+299.(1+2+22)
A=1.7+23.7+...+299.7
A=7.(1+23+...+299)
=> A chia hết cho 7 (đpcm)
B=3+32+33+...+3150
B=(3+32+33)+...+(3148+3149+3150)
B=3.(3+32+33)+...+3148.(3+32+33)
B=3.39+...+3148.39
B=39.(3+...+3148)
=>B chia hết cho 39
B = (1 + 3) + (32+33)+.....+(389+390)
= 4 + 32 .(1 + 3) + .....+390.(1+3)
= 1 .4 + 32.4 + ..... +390.4
= 4.(1 + 32 + .... +390) chia hết cho 4
\(S=3+3^2+3^3+3^4+....+3^{89}+3^{90}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{88}+3^{89}+3^{90}\right)\)
\(==3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^{88}\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(3+3^4+....+3^{88}\right)\)
\(=13\left(3+3^4+...+3^{88}\right)\)\(⋮\)\(13\)
Chứng minh rằng:
a) 3 + 32 +.....+ 31998
= (3 + 32)+(33+34) +(35+36) .....+ (31997+31998 )
có 1998: 2 = 999 nhóm
= (3 + 32) + 32.(3 + 32) +34.(3 + 32) .....+ 31996(3 + 32)
= 12 + 32.12 +34.12 +....+ 31996.12
= 12( 1+32+34+.......+31996) chia hết cho 12
b) 3 + 32 +....+ 31998
= (3 + 32 +33) + (34 + 35 +36) + .. + (31996 + 31997 +31998) có 1998 : 3 = 666 nhóm
= (3 + 32 +33) + 33.(3 + 32 +33)+ ...+31995.(3 + 32 +33)
= 39 +33.39 + .....+31995.39
= 39(1+33+....+31995) chia hết cho 39
c) 3 + 32 +.....+ 3100 chia hết cho 120
nhóm mỗi nhóm 4 số hạng tương tự như hai câu trên ta được thừa số chung là 120
Đặt A = 32 + 33 + 34 + .....+ 3101 ( có 100 số ; có 100 chia hết cho 4 )
A = ( 32 + 33 + 34 + 35 ) + ( 36 + 37 + 38 + 39 ) + ....+ ( 398 + 399 + 3100 + 3101 )
A = 3 . ( 3 + 32 + 33 + 34 ) + 35. ( 3 + 32 + 33 + 34 ) + ..... + 397. ( 3 + 32 + 33 + 34 )
A = 3 . 120 + 35. 120 + .... + 397. 120
A = 120 . ( 3 + 35 + ... + 397 ) chia hết cho 120
\(\Rightarrow\) 32 + 33+ 34 +……+ 3101 chia hết cho 120
tự tím nha