Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp chia hết cho 3
tick minh nha
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\\ \)
- Nếu n chia hết cho 5 thì A chia hết cho 5
- Nếu n chia 5 dư 1 thì (n-1) chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 2 thì n = 5k +2 => n2 + 1 = 25k2 + 20k + 4 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 3 thì n = 5k +3 => n2 + 1 = 25k2 + 30k + 9 + 1 chia hết cho 5 => A chia hết cho 5
- Nếu n chia 5 dư 4 thì (n+1) chia hết cho 5 => A chia hết cho 5
n thuộc N lớn hơn hoặc bằng 2 chỉ có 5 trường hợp có số dư như trên khi chia cho 5. Nên A chia hết cho 5 với mọi n thuộc N lớn hơn hoặc bằng 2.
+ Nếu n chia hết cho 3 thì tích chia hết cho 3
+ Nếu n chia 3 dư 1 thì 2n chia 3 dư 2 => 2n+1 chia hết cho 3 => tích chia hết cho 3
+ nếu n chia 3 dư 2 => n+1 chia hết cho 3 => tích chia hết cho 3
=> tích chia hết cho 3 với mọi n
Tổng các chữ số của số 111...1 (n số 1 là: 1.n
=>tổng các chữ số của số A là: 8n+1n=n(8+10=9n chia hết cho 9
Vì toongr các chữ số của A chia hết cho 9
nên A chia hết cho 9 (đpcm)
n(n + 1)(2n + 1) chia hết cho 6
n(n + 1)(2n + 1) chia hết cho 2 và 3
n(n + 1) là tích 2 số tự nhiên liên tiếp
Nên n(n + 1) chia hết cho 2 < = > n(n + 1)(2n + 1) chia hết cho 2
n chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 1 => 2n + 1 chia hết cho 3 => Tích chia hết cho 3
n chia 3 dư 2 => n + 1 chia hết cho 3 => Tích chia hết cho 3
< = > n(n + 1)(2n + 1) chia hết cho 3
UCLN(2,3) = 1
Do đó n(n + 1)(2n + 1) chia hết cho 2.3 = 6
=> ĐPCM
câu 1 mk hổng biết
câu 2 giải như sau
ta có : 12=3.4
A=3+32+33+34+....+32016=(3+32)+(33+34)+.....+(32015+32016)
=(3.1+3.3)+(33.1+33.3)+(32015.1+32015.3)
=3.(1+3)+33.(1+3)+....+32015.(1+3)
=3.4+33.4+....+32015.4
=4.(3+33+.....+32015)
Vì 4 chia hết cho 4=>4.(3+33+...+32015) (1)
Vì tất cả các số hạng trong A đều là lũy thừa của 3 =>A chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 3.4 =>A chia hết cho 12 (đpcm)
Từ hằng đẳng thức quen thuộc sau:
a^n -b^n = (a-b).[a^(n-1) +a^(n-2).b + a^(n-3).b^2 +... + a.b^(n-2) +b^(n-1)]
Ta dẫn đến hệ quả:
Nếu a;b là các số tự nhiên khác nhau thì: (a^n-b^n) chia hết cho (a-b)
Áp dụng kết quả trên; ta được:
3^(6n) -2^(6n) = (3^6)^n - (2^6)^n = 729^n - 64^n chia hết cho (729-64)
Vậy: 3^(6n) -2^(6n) chia hết cho 665
Mà: 665 = 35.19
Do đó: 3^(6n) -2^(6n) chia hết cho 35
bài này tui còn lâu mới học!