Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25 = 32 = 1 (mod 31)
=> (25)400 = 1400 = 1 (mod 31)
=> 22000 = 1 (mod 31)
=> 22000.22 = 22 (mod 31)
=> 22002 = 4 (mod 31)
=> 22002 - 4 = 0 (mod 31)
Vậy...
2^1995 - 1 = ( 2^5)^399 = 32^399 -1
Ma 32 dong du vs 1( mod 31 )
=> 32^399 dong du vs 1( mod 31 )
=> 32^399 dong du vs 0( mod 31 )
=> 2^1995 - 1 chia het cho 31 ( dpcm )
Ta có: \(2^{1995}=\left(2^5\right)^{399}=32^{399}⋮32\)
Mà \(32\equiv1\)(mod 31)
\(\Rightarrow2^{1995}\equiv1\)(mod 31)
\(\Rightarrow2^{1995}-1⋮31\)(đpcm)
a, C= 75.( 42001+42000+41999+ ... +42+41+40)+25
= \(75.\frac{4^{2002}-1}{3}+25\)
= 25.(42002-1) +25
= 25.42002
Vì 25.42002 chia hết cho 42002 nên C chia hết cho 42002
b, Vì 25 chia cho 4 dư 1 nên 25.42002 chia cho 4.42002 dư 6
Vậy C chia 42003 dư 6
câu b sai rồi đáng ra phải thế này
\(\frac{25.4^{2002}}{4^{2003}}=\frac{25}{4}=6,25\)
Do đó C chia cho 42003 dư 25.42002 _ 6.42003=1
Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿
Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31
=> 25﴾x+7y﴿ chia hết cho 31
Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿
Nên x+7y chia hết cho 31
Vậy ...
1) Xét hiệu:
6 x (a+7b)-(6a+11b)
= 6a+42b-6a-11b
=31b
Vs b thuộc N thì 31b chia hết cho 31
=>6 x (a+7b)-(6a+11b) chia hết cho 31
Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31
=>6a+11b chia hết cho 31
\(2^5=32\equiv1\left(mod31\right)\)
\(\Rightarrow\left(2^5\right)^{400}\equiv1\)( mod 31)
\(\Rightarrow2^{2000}\equiv1\)( mod 31)
\(\Rightarrow2^{2000}\times2^2\equiv2^2\)( mod 31)
\(\Rightarrow2^{2002}\equiv4\)( mod 31)
\(\Rightarrow2^{2002}-4\equiv0\)( mod 31)
iwjdfìewaohdòihódfuhtAao xdem sssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssex lko dSVOKJDưgeohqởigie