K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2022

Gọi d là ước chung lớn nhất của 2n + 1 và 3n + 1.

Ta có:

 [Năm 2021] Đề thi Học kì 1 Toán lớp 6 có đáp án (3 đề) | Cánh diều

[Năm 2021] Đề thi Học kì 1 Toán lớp 6 có đáp án (3 đề) | Cánh diều

Do đó d = ±1

Do đó: ƯCLN (2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 nguyên tố cùng nhau.

Học tốt nhé! 

 

4 tháng 12 2022

Gọi d là ước chung lớn nhất của 2n + 1 và 3n + 1.

Ta có:

 [Năm 2021] Đề thi Học kì 1 Toán lớp 6 có đáp án (3 đề) | Cánh diều

[Năm 2021] Đề thi Học kì 1 Toán lớp 6 có đáp án (3 đề) | Cánh diều

Do đó d = ±1

Do đó: ƯCLN (2n + 1; 3n + 1) = 1

Vậy hai số 2n + 1 và 3n + 1 nguyên tố cùng nhau.

Chúc bạn học tốt!

 

 

29 tháng 12 2015

a)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp khác 0 là hai số nguyên tố cùng nhau

b)Vì hai số tự nhiên liên tiếp có UC là 1 nên =>Hai số tự nhiên lien tiếp là hai số nguyên tố cùng nhau

tick nha

23 tháng 12 2022

loading...

6 tháng 2 2023

Gọi \(k\) là \(ƯCLN\left(2n+1,3n+1\right)\)

Khi đó:

\(\left\{{}\begin{matrix}2n+1⋮k\\3n+1⋮k\end{matrix}\right.\)

\(\Rightarrow\left(3n+1\right)-\left(2n+1\right)⋮k\)

\(\Rightarrow1⋮k\) hay \(k=1\) (đpcm)

6 tháng 2 2023

Gọi d là ƯCLN(2n+1;3n+1)

Ta có:2n+1 chia hết cho d

          3n+1 chia hết cho d

Suy ra (3n+1)-(2n+1) chia hết cho d

Suy ra 3n-2n chia hết cho d

Suy ra 1 chia hết cho d

Suy ra 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau

 

27 tháng 10 2023

 gải:

ta gọi x là ƯCLN của 2n+1 và 3n+1

suy ra: (2n+1) chia hết cho x

           (3n+1) chia hết cho x

suy ra: [3(2n+1)-2(3n+1)] chia hết cho x

hay 1 chia hết cho x

suy ra: x e Ư(1)

Ư(1)={1}

do đó x=1

nên ƯCLN(2n+1;3n+1)=1

vì ƯCLN  của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau 

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10 2024

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

29 tháng 12 2021

Gọi d là ƯCLN(2n+1, 3n+2)

Ta có: 2n+1 chia hết cho d, 3n+2 chia hết cho d

=> 2(3n+2) - 3(2n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

Vậy 2n+1 và 3n+2 là 2 số nguyên tố cùng nhau

cre: h 

30 tháng 10 2023

TÔI KO BIẾT

 

29 tháng 12 2021

Đặt \(ƯCLN\left(2n+1,3n+2\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+4⋮d\end{cases}}\)

\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d\)\(\Rightarrow1⋮d\)

Mà \(d\inℕ^∗\)\(\Rightarrow d=1\)

Từ đó \(ƯCLN\left(2n+1,3n+2\right)=1\)

Và ta kết luận với mọi \(n\inℕ\)thì \(2n+1\)và \(3n+2\)nguyên tố cùng nhau.

29 tháng 12 2021

Ta có 2n+1 =6n+3

3n+2=6n+4

gọi d là ước của 6n+3 và 6n+4

Ta có (6n+3)-(6n+4) chia hết cho d

=> 1 chia hết cho d

=> d=1

vậy 2n+1 and n+2 là 2 số nguyên tố cùng nhau

21 tháng 11 2018

\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)

\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)

Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3

Giả sử: 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3

Giả sử: 7n+2 chia hết cho 3

=> 7n+2-9 chia hết cho 3

=>.........

Vậy với n khác 3k+1;3k+2 thì thỏa mãn

21 tháng 11 2018

MK nhầm chỉ khác 3k+1 nha bỏ đoạn dưới

Dễ mà 

Ta có ƯC( 2n+1 và 3n+1) là d

=> 2n+1 và 3n+1 chia hết cho d

=> 3(2n+1) chia hết cho d

=> 2(3n+1) chia hết cho d

=> 6n+3và 6n+2 chia hết cho d

=> 6n+3 - 6n+2 chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯC( 2n+1 và 3n+1)=1

=> đpcm 

bài này rất hóc búa!

vào câu hỏi tương tự nha!