Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n=0 thì 2^2^4n + 1 +7 =11 chia hết cho 11
Nếu n > 0 thì 2^2^4n + 1 =2^2^4n × 2^2^4n. (1)
Có:
2^4n=.......6=......5+1=5x +1
Vì ....5 lẻ ;5 lẻ suy ra 5 lẻ nên 2^2^4n =2^5x+1
2^5 đồng dư vs -1 ( mod 11) suy ra (2^5)^x đồng dư với -1( mod 11) ( vì x lẻ)
Suy ra (2^5)^x +1 chia hết cho 11
=) 2× [(2^5)^x +1] chia hết cho 11 (=) 2^5x+1 +2 chia hết cho 11
hay 2^2^4n +2 chia hết cho 11
Lại có 2^2^4n đồng dư với -2 ( mod 11)
Từ (1);(2) suy ra : 2^2^4n × 2^2^4n đồng dư vs 4 (mod 11)
Suy ra 2^2^4n+1 đồng dư vs 4 ( mod 11)
Vậy 2^2^4n+1+7 chia hết cho 11
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
đặt A=2^4n+1
=16^n.2
16^n đồng dư với 6 (mod 10)
=>16^n.2 đồng dư với 2.6=12=2(mod 10)
A chia 10 dư 2=10k+2(k thuộc N)
đặt B=3^4n+1
=81^n.3 đồng dư với 1.3=3 ( mod 10)
=>B chia 10 dư 3=10p+3(p thuộc N)
ta có 3^2^4n+1 + 3^3^4n+1 +5
=3^10k+2 + 3^10p+3 +5
3^10 đồng dư với 1 (mod 11)
=>3^10k+2 đồng dư với 1.3^2=9(mod 11)
=>3^10p+3 đồng dư với 1.3^3=27(mod 11)
5 đồng dư với 5(mod 11)
=> 3^2^4n+1 + 3^3^4n+1 +5 đồng dư với 9+27+5=41(mod 11)
=> đề sai! phải là 2^3^4n+1 mới đúng