Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11991+21991+..+19911991
=1+2995.2+1+...+19912.995+1
=1+(22)995.2+...+(19912)995.1991
=(1+22.995.2+...+19912.1991).1991 chia hết cho 11
a,Ta có : \(1996\equiv1\left(mod5\right)\)
\(\Rightarrow1996^{1996}\equiv1^{1996}\left(mod5\right)\)
\(1991\equiv1\left(mod5\right)\)
\(\Rightarrow1991^{1991}\equiv1^{1991}\left(mod5\right)\)
\(\Rightarrow1996^{1996}-1991^{1991}\equiv1^{1996}-1^{1991}\left(mod5\right)\)
\(\Leftrightarrow1996^{1996}-1991^{1991}\equiv0\left(mod5\right)\)
Hay \(1996^{1996}-1991^{1991}⋮5\)
b,Ta có : \(9^{1972}=\left(9^2\right)^{986}=81^{986}\)
\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\)
Ta lại có : \(81\equiv1\left(mod10\right)\)
\(\Rightarrow81^{986}\equiv1^{986}\left(mod10\right)\)
\(2401\equiv1\left(mod10\right)\)
\(\Rightarrow2401^{493}\equiv1^{493}\left(mod10\right)\)
\(\Rightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv1^{986}-1^{493}\left(mod10\right)\)
\(\Leftrightarrow9^{1972}-7^{1972}=81^{986}-2401^{493}\equiv0\left(mod10\right)\)
hay \(9^{1972}-7^{1972}⋮10.\)
c, Ta có : \(89\equiv1\left(mod2\right)\)
\(\Rightarrow89^{26}\equiv1^{26}\left(mod2\right)\)
\(45\equiv1\left(mod2\right)\)
\(\Rightarrow45^{21}\equiv1^{21}\left(mod2\right)\)
\(\Rightarrow89^{26}-45^{21}\equiv1^{26}-1^{21}\left(mod2\right)\)
\(\Rightarrow89^{26}-45^{21}\equiv0\left(mod2\right)\)
Hay \(89^{26}-45^{21}⋮0\)
\(1996\equiv1\left(mod5\right)\Rightarrow1996^{1996}\equiv1\left(mod5\right)\)
\(1991\equiv1\left(mod5\right)\Rightarrow1991^{1991}\equiv1\left(mod5\right)\)
\(\Rightarrow1996^{1996}-1991^{1991}\equiv1-1=0\left(mod5\right)\Leftrightarrowđpcm.\)
\(9^{1972}=\left(9^2\right)^{986}=81^{986}\equiv1\left(mod10\right)\)
\(7^{1972}=\left(7^4\right)^{493}=2401^{493}\equiv1\left(mod10\right)\)
\(\Rightarrowđpcm.\)
a) \(1991\equiv2\left(mod9\right)\)
=> \(1991^{1990}\equiv2^{1990}\left(mod9\right)\)
=> \(1991^{1990}\equiv2^{3.633}.2\left(mod9\right)\equiv-2\left(mod9\right)\)
\(1990^{1991}\equiv1\left(mod9\right)\)
=> \(1991^{1990}+1990^{1991}\equiv8\left(mod9\right)\)
=> đpcm
b) Ta có 89 là số lẻ =>8926 lẻ
45 là số lẻ => 4521lẻ
=> 8926 - 4521 chẵn => chia hết cho 2 => đpcm
NHỚ CHO MIK NHA BẠN THÂN MẾN
mod là modun
ví dụ như 3 chia 2 dư 1
5 chia 2 dư 1 ta nói 3 đồng dư với 1 theo modun 2
và \(5\equiv1\left(mod2\right)\)
Ta có :
B=3+33+35+..............+31991B=3+33+35+..............+31991
⇔B=(3+33+35)+(37+39+311)+...............+(31987+31989+31991)⇔B=(3+33+35)+(37+39+311)+...............+(31987+31989+31991)
⇔B=1(3+33+35)+..............+31987(3+33+35)⇔B=1(3+33+35)+..............+31987(3+33+35)
⇔B=273+.............+31987.273⇔B=273+.............+31987.273
⇔B=273(1+..........+31987)⇔B=273(1+..........+31987)
Mà 273⋮13273⋮13
⇔B⋮13⇔đpcm⇔B⋮13⇔đpcm
Lại có :
B=3+33+35+..............+31991B=3+33+35+..............+31991
⇔B=(3+33+35+37)+..........(31985+31987+31989+31991)⇔B=(3+33+35+37)+..........(31985+31987+31989+31991)
⇔B=1(3+33+35+37)+..........+31985(3+33+35+37)⇔B=1(3+33+35+37)+..........+31985(3+33+35+37)
⇔B=2460+..............+31985.2460⇔B=2460+..............+31985.2460
⇔B=2460(1+............+31985)⇔B=2460(1+............+31985)
Mà 2460⋮412460⋮41
⇔B⋮41→đpcm
Lời giải:
$B=3+3^2+(3^3+3^4+3^5)+(3^6+3^7+3^8)+....+(3^{1989}+3^{1990}+3^{1991})$
$=12+3^3(1+3+3^2)+3^6(1+3+3^2)+...+3^{1989}(1+3+3^2)$
$=12+(1+3+3^2)(3^3+3^6+...+3^{1989})$
$=12+13(3^3+3^6+...+3^{1989})$
$\Rightarrow B$ chia $13$ dư $12$.
2/
$B=3+3^2+3^3+...+3^{1991}$
$3B=3^2+3^3+3^4+...+3^{1992}$
$\Rightarrow 3B-B=3^{1992}-3$
$\Rightarrow 2B=3^{1992}-3$
Có:
$3^4\equiv -1\pmod {41}$
$\Rightarrow 3^{1992}=(3^4)^{498}\equiv (-1)^{498}\equiv 1\pmod {41}$
$\Rightarrow 3^{1992}-3\equiv 1-3\equiv -2\pmod {41}$
$\Rightarrow 2B\equiv -2\pmod {41}$
$\Rightarrow 2B\not\vdots 41$
$\Rightarrow B\not\vdots 41$.
Theo Fermat:a^11=a(mod 11)=>a^1991=a(mod 11)
tick nha