K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2015

->1/51+1/52+...+1/100>1/100+1/100+...+1/100(50 lần 1/100)                                           (50 là số số hạng từ 51 đến 100)                                                                                    =>1/100+1/100+...+1/100=50/100=1/2 =>1/51+1/52+...+1/100>1/2       (ĐPCM)            ->1/51+1/52+...+1/100<1/51+1/51+...+1/51(50 lần 1/51)                                                   =>1/51+1/51+...+1/51=50/51<1                                                                                        =>1/51+1/52+...+1/100<50/51<1=>1/51+1/52+...+1/100<1   (ĐPCM)

23 tháng 3 2017

dung rui do

18 tháng 7 2019

Ta có :

S= 1/51 +1/52 +..+1/100

Vì 1/51>1/52>...>1/100 

=> S >1/100 * 50 =1/2 (1)

Vì 1/100 <1/99<...<1/51<1/50

=> S < 1/50 * 50=1 (2)

Từ (1),(2) => 1/2 < S<1

P=1/2^2+1/2^3+...+1/2^2018 

2P=1/2 +1/2^2 +...+1/2^2017

=> 2P-P= (1/2 +1/2^2 +...+1/2^2017)-(1/2^2+1/2^3+...+1/2^2018 )

=> P=1/2 -1/2^2018 <1/2 <3/4

18 tháng 7 2019

Ta có: \(\frac{1}{51}>\frac{1}{100};\frac{1}{52}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}.50=\frac{1}{2}\)

\(\Rightarrow S>\frac{1}{2}\)

Ta có \(\frac{1}{51}< \frac{1}{50};\frac{1}{52}< \frac{1}{50};...;\frac{1}{100}< \frac{1}{50}\)

\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{50}.50=1\)

\(\Rightarrow S< 1\)

18 tháng 8 2015

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{1}{100}.50=\frac{1}{2}\)

Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{1}{2}\)

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{1}{50}.50=1\)

Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)

Kết luận: \(\frac{1}{2}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)

18 tháng 8 2015

\(\frac{1}{51}<\frac{1}{50},\frac{1}{52}<\frac{1}{50};...;\frac{1}{100}<\frac{1}{50}\)

-->\(\frac{1}{51}+\frac{1}{52}+..+\frac{1}{100}<50.\frac{1}{50}\)( tu 51 den 100 co 50 so hang)

-->\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}<1\)(1)

ta co

\(\frac{1}{100}<\frac{1}{51}\)

\(\frac{1}{100}<\frac{1}{52}\)

...

\(\frac{1}{100}<\frac{1}{99}\)

\(\frac{1}{100}=\frac{1}{100}\)

---> \(50.\frac{1}{100}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

-->\(\frac{1}{2}<\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\) (2_)

 tu (1) va (2)==> dpcm

10 tháng 7 2017

Ta có:\(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+............+\frac{1}{100}\)

\(=\left(\frac{1}{51}+\frac{1}{52}+.........+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+........+\frac{1}{100}\right)\)

\(>\frac{1}{75}.25+\frac{1}{100}.25=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{1}{2}\)

\(\left(\frac{1}{51}+\frac{1}{52}+..........+\frac{1}{75}\right)+\left(\frac{1}{76}+........+\frac{1}{100}\right)\)

\(< \frac{1}{50}.25+\frac{1}{75}.25=\frac{1}{2}+\frac{1}{3}=\frac{5}{6}< 1\)

\(\Rightarrowđpcm\)

29 tháng 3 2018

Ta có :

\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{52}+....+\frac{1}{100}\)

\(\Rightarrow H>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+....+\frac{1}{100}\)

\(\Rightarrow H>\frac{1}{100}.50\)

\(\Rightarrow H>\frac{1}{2}\)

Lại có :

\(H=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.....+\frac{1}{100}\)

\(\Rightarrow H< \frac{1}{51}+\frac{1}{51}+\frac{1}{51}+........+\frac{1}{51}\)

\(\Rightarrow H< \frac{1}{51}.50\)

\(\Rightarrow H< \frac{50}{51}\)

\(\Rightarrow H< 1\)

Vậy \(\frac{1}{2}< H< 1\left(ĐPCM\right)\)

17 tháng 3 2017

Vì mọi phân số của tổng đều nhỏ hơn 1 nên tổng đó nhỏ hơn 1.

k nha

18 tháng 3 2017

Ta thấy:

\(\dfrac{1}{51}< \dfrac{1}{50}\)

\(\dfrac{1}{52}< \dfrac{1}{50}\)

...

\(\dfrac{1}{100}< \dfrac{1}{50}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\left(1\right)\)

Lại có:

\(\dfrac{1}{51}>\dfrac{1}{100}\)

\(\dfrac{1}{52}>\dfrac{1}{100}\)

...

\(\dfrac{1}{100}=\dfrac{1}{100}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{2}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\)\(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)

21 tháng 7 2022

45854

 

212122512122

1

1

1

1123

4564

454

3546434

 

19 tháng 4 2016

đánh phần ở đâu thế?