Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, B=1+31+....+319
3B=3+32+.....+320
2A=3A-A=320-1
=> A=(320-1):2(đpcm)
a) Không thể vì: \(\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}=1+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}>1\)
b) Ta có: \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
CM: \(\dfrac{a}{b}=\dfrac{a\cdot\left(b-m\right)}{b\cdot\left(b-m\right)}=\dfrac{ab-am}{b^2-bm}\left(1\right)\\ \dfrac{a-m}{b-m}=\dfrac{\left(a-m\right)\cdot b}{\left(b-m\right)\cdot b}=\dfrac{ab-am}{b^2-bm}\left(2\right)\)
Vì \(\dfrac{a}{b}< 1\Rightarrow a< b\Rightarrow am< bm\Rightarrow ab-am>ab-bm\left(3\right)\)
Từ (1), (2), (3) ta có \(\dfrac{a}{b}>\dfrac{a-m}{b-m}\)
Vậy
\(B=\dfrac{17^{19}-1}{17^{20}-1}>\dfrac{17^{19}-1-16}{17^{20}-1-16}=\dfrac{17^{19}-17}{17^{20}-17}=\dfrac{17\cdot\left(17^{18}-1\right)}{17\cdot\left(17^{19}-1\right)}=\dfrac{17^{18}-1}{17^{19}-1}=A\)
Vậy B > A
CMR:
a) B = 1 + 3+ 32 + 33 + 34+...........+320 chia hết cho 13.
BL: Từ 0 \(\rightarrow\) 20 có 21 số.
Nhóm thành: 21 : 3 = 7 (nhóm), mỗi nhóm có 3 số hạng
Ta có: B = (1 + 3 + 32) + (33 + 34 + 35) + ... + (318 + 319 + 320)
\(\Leftrightarrow\) B = 13 + 33 . (1 + 3 + 32) + ... + 318 . (1 + 3 + 32)
\(\Leftrightarrow\) B = 13 + 33 . 13 + ... + 318 . 13
\(\Leftrightarrow\) B = 13 . (1 + 33 + ... + 318)
Rõ ràng B \(⋮\) 13
b) A = 1 + 7 + 72 + 73 + 74+ ... +719 là hợp số.
BL: Từ 0 \(\rightarrow\) 19 có 20 số.
Nhóm thành: 20 : 4 = 5 (nhóm), mỗi nhóm có 4 số hạng
Ta có: A = (1 + 7 + 72 + 73) + (74 + 75 + 76 + 77) + ... + (716 + 717 + 718 + 719)
\(\Leftrightarrow\) A = 400 + 74 . (1 + 7 + 72 + 73) + ... + 716 . (1 + 7 + 72 + 73)
\(\Leftrightarrow\) A = 400 + 74 . 400 + ... + 716 . 400\(\Leftrightarrow\) A = 400 . (1 + 74 + ... + 716)
Rõ ràng A \(⋮\) 400 và A > 400 \(\Rightarrow\) A là hợp số.
Xét từ 1 đến 30 có 30 số hạng
30:3=10( nhóm,mỗi
nhóm có ba số)
Suy ra
(1+3+32)+..................+(328+329+330)
=13.1+...+13.328
=13.(1+...+328)
Rõ ràng chia hêt cho 13
b)Chắc chắn là hợp số vì tông A sẽ chia hết cho các số hạng đã công vào
CHUC HOC TÔT
\(B=1+2+2^2+2^3+...+2^{14}+2^{15}\)
\(=1+\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{13}+2^{14}+2^{15}\right)\)
\(=1+2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{13}\left(1+2+2^2\right)\)
\(=1+\left(1+2+2^2\right)\left(2+2^4+....+2^{13}\right)\)
\(=1+7\left(2+2^4+...+2^{13}\right)\)
=> B không chia hết cho 7
\(Q=1+3+3^2+3^3+...+3^{19}+3^{20}\)
\(=1+\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{19}+3^{20}\right)\)
\(=1+3\left(1+3\right)+3^3\left(1+3\right)+...+3^{19}\left(1+3\right)\)
\(=1+\left(1+3\right)\left(3+3^3+...+3^{19}\right)\)
\(=1+4\left(3+3^3+...+3^{19}\right)\)
=> Q không chia hết cho 4
nen 2S=1+1/2+1/2 mu 2 +....1/2 mu 19
do do 2S-S=1-1/2 mu 20 .vay S=1-1/2 mu 20 <1