\(cos\dfrac{\pi}{2n+1}cos\dfrac{2\pi}{2n+1}....cos\dfrac{n\pi}{2n+1}=\dfrac{1}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 2 2019

Áp dụng công thức biến tích thành tổng:

\(cos\left(a+b\right).cos\left(a-b\right)=\dfrac{1}{2}\left(cos2a+cos2b\right)\)

\(=\dfrac{1}{2}\left(2cos^2a-1+1-2sin^2b\right)=\dfrac{1}{2}\left(2cos^2a-2sin^2b\right)\)

\(=cos^2a-sin^2b\)

\(cos\left(\dfrac{\pi}{4}+a\right).cos\left(\dfrac{\pi}{4}-a\right)+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos\dfrac{\pi}{2}+cos2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos2a+\dfrac{1}{2}sin^2a=\dfrac{1}{2}\left(cos^2a-sin^2a\right)+\dfrac{1}{2}sin^2a\)

\(=\dfrac{1}{2}cos^2a\)

5 tháng 4 2017

a) \(A=sin\left(\dfrac{\pi}{4}+x\right)-cos\left(\dfrac{\pi}{4}-x\right)\)

\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-\left(cos\dfrac{\pi}{4}.cosx+sin\dfrac{\pi}{4}.sinx\right)\)

\(\Leftrightarrow A=sin\dfrac{\pi}{4}.cosx+cos\dfrac{\pi}{4}.sinx-cos\dfrac{\pi}{4}.cosx-sin\dfrac{\pi}{4}.sinx\)

\(\Leftrightarrow A=\dfrac{\sqrt{2}}{2}.cosx+\dfrac{\sqrt{2}}{2}.sinx-\dfrac{\sqrt{2}}{2}.cosx-\dfrac{\sqrt{2}}{2}.sinx\)

\(\Leftrightarrow A=0\)

b) \(B=cos\left(\dfrac{\pi}{6}-x\right)-sin\left(\dfrac{\pi}{3}+x\right)\)

\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-\left(sin\dfrac{\pi}{3}.cosx+cos\dfrac{\pi}{3}.sinx\right)\)

\(\Leftrightarrow B=cos\dfrac{\pi}{6}.cosx+sin\dfrac{\pi}{6}.sinx-sin\dfrac{\pi}{3}.cosx-cos\dfrac{\pi}{3}.sinx\)

\(\Leftrightarrow B=\dfrac{\sqrt{3}}{2}.cosx+\dfrac{1}{2}.sinx-\dfrac{\sqrt{3}}{2}.cosx-\dfrac{1}{2}.sinx\)

\(\Leftrightarrow B=0\)

c) \(C=sin^2x+cos\left(\dfrac{\pi}{3}-x\right).cos\left(\dfrac{\pi}{3}+x\right)\)

\(\Leftrightarrow C=sin^2x+\left(cos\dfrac{\pi}{3}.cosx+sin\dfrac{\pi}{3}.sinx\right).\left(cos\dfrac{\pi}{3}.cosx-sin\dfrac{\pi}{3}.sinx\right)\)

\(\Leftrightarrow C=sin^2x+\left(\dfrac{1}{2}.cosx+\dfrac{\sqrt{3}}{2}.sinx\right).\left(\dfrac{1}{2}.cosx-\dfrac{\sqrt{3}}{2}.sinx\right)\)

\(\Leftrightarrow C=sin^2x+\dfrac{1}{4}.cos^2x-\dfrac{3}{4}.sin^2x\)

\(\Leftrightarrow C=\dfrac{1}{4}.sin^2x+\dfrac{1}{4}.cos^2x\)

\(\Leftrightarrow C=\dfrac{1}{4}\left(sin^2x+cos^2x\right)\)

\(\Leftrightarrow C=\dfrac{1}{4}\)

d) \(D=\dfrac{1-cos2x+sin2x}{1+cos2x+sin2x}.cotx\)

\(\Leftrightarrow D=\dfrac{1-\left(1-2sin^2x\right)+2sinx.cosx}{1+2cos^2a-1+2sinx.cosx}.cotx\)

\(\Leftrightarrow D=\dfrac{2sin^2x+2sinx.cosx}{2cos^2x+2sinx.cosx}.cotx\)

\(\Leftrightarrow D=\dfrac{2sinx\left(sinx+cosx\right)}{2cosx\left(cosx+sinx\right)}.cotx\)

\(\Leftrightarrow D=\dfrac{sinx}{cosx}.cotx\)

\(\Leftrightarrow D=tanx.cotx\)

\(\Leftrightarrow D=1\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2018

Lời giải:

Do \(0< a< \frac{\pi}{2}\Rightarrow \sin a>0\)

Ta có:

\(\sqrt{\frac{1+\cos a}{1-\cos a}}-\sqrt{\frac{1-\cos a}{1+\cos a}}=\frac{(1+\cos a)-(1-\cos a)}{\sqrt{(1-\cos a)(1+\cos a)}}\)

\(=\frac{2\cos a}{\sqrt{1-\cos ^2a}}=\frac{2\cos a}{\sqrt{\sin ^2a}}=\frac{2\cos a}{\sin a}\)

\(=2.\frac{\cos a}{\sin a}=2\cot a\)

Ta có đpcm.

18 tháng 4 2017

\(\cos\dfrac{\pi}{15}.\cos\dfrac{2\pi}{15}...\cos\dfrac{7\pi}{15}=-\dfrac{1}{2}.\left(\cos\dfrac{\pi}{15}.\cos\dfrac{2\pi}{15}.\cos\dfrac{4\pi}{15}.\cos\dfrac{8\pi}{15}\right).\left(\cos\dfrac{3\pi}{15}.\cos\dfrac{6\pi}{15}\right)\)

\(=-\dfrac{1}{2}.\left(\cos\dfrac{\pi}{15}.\cos\left(2.\dfrac{\pi}{15}\right).\cos\left(2^2.\dfrac{\pi}{15}\right).\cos\left(2^3\dfrac{\pi}{15}\right)\right).\left(\cos\dfrac{3\pi}{15}.\cos\left(2.\dfrac{3\pi}{15}\right)\right)\)

\(=-\dfrac{1}{2}.\left(\dfrac{\sin\left(2^4.\dfrac{\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(2^2\dfrac{3\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)\)

\(=-\dfrac{1}{2}.\left(\dfrac{\sin\left(\dfrac{16\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(\dfrac{12\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)\)

\(=-\dfrac{1}{2}.\left(\dfrac{-\sin\left(\dfrac{\pi}{15}\right)}{16.\sin\left(\dfrac{\pi}{15}\right)}\right).\left(\dfrac{\sin\left(\dfrac{3\pi}{15}\right)}{4.\sin\left(\dfrac{3\pi}{15}\right)}\right)=\dfrac{1}{128}\)

26 tháng 4 2017

Giải bài 3 trang 154 SGK Đại Số 10 | Giải toán lớp 10

23 tháng 3 2018

rút gọn biểu thức:

E=cos(\(\dfrac{3\pi}{3}-\alpha\))-sin(\(\dfrac{3\pi}{2}-\alpha\))+sin(\(\alpha+4\pi\))