K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Phải là x4-x3+2x2-x+1=0

Ta có : x4 - x3 + 2x2 - x + 1

= ( x4 + 2x2 + 1 ) - ( x3 + x )

= ( x2 + 1 )2 - x( x2 + 1 )

= (x2 + 1) ( x2 + 1 - x)

vì x2 > 0 và x2-x + 1 > 0

Nên pt đã cho vô nghiệm.

6 tháng 3 2018

ngu thế bài này mà ko bài này ko biết làm

27 tháng 2 2020

a)5(x+2)=2(x+7)+3x-4

<=>5x+10=2x+14+3x-4

<=>5x+10=5x+10

=>PT sau vô nghiệm

đpcm.

b)(x+2)2=x2+2x+2 (x+2)

<=>x2+4x+4=x2+4x+4

=> PT sau vô nghiệm

=>đpcm.

27 tháng 2 2020

bn sửa lại giúp tớ nhé tớ ghi lại đề bài rồi hi

11 tháng 2 2019

a, \(x^4-2x^3+4x^2-3x+2=x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2\)

\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2-x+2\right)\)

\(=\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\) (dpdcm)

b, \(x^6+x^5+x^4+x^2+x+1=x^4\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^4+1\right)=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(x^4+1\right)>0\) (đpcm)

11 tháng 2 2019

ô ai cho bạn ấy sai zậy

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

6 tháng 3 2015

Ta có : x^4 - x^3 + 2x^2 - x + 1

        = ( x^4 + 2x^2 + 1 ) - ( x^3 + x )

        = ( x^2 + 1 )^2 - x( x^2 + 1 )

        = (x^2 + 1) ( x^2 + 1 - x)

vì x^2 > 0 và x^2-x + 1 > 0

Nên pt đã cho vô nghiệm

10 tháng 2 2019

1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0

\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0

\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0

\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0

\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0

\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0  

VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x

x^2+1>0\(\forall\)x

\(\Rightarrow\)Phương trình đã cho vô nghiệm

10 tháng 2 2019

1)x^4 - x^3 + 2x^2 - x + 1 = 0

  (x^4 + 2x^2 +1) - (x^3+x)= 0

   x^4 + 2x^2 + 1               = x^3 - x

     (x^2 + 1)^2                  = x(x^2 + 1)

(x^2+1)(x^2+1)                =  x(x^2 + 1)

(x^2+1)(x^2+1)                =  x(x^2 + 1)

               x^2+1                =  x (vô lí)

==> PT vô nghiệm

12 tháng 4 2019

Ta đặt phương trình x4 - x3 + 2x2 - x + 1 = 0 là (1).

Biến đổi phương trình (1) thành:

(x2 + 1)2 - x(x2 + 1) = 0 <=> (x2 + 1)(x2 + 1 - x) = 0

Có \(\hept{\begin{cases}x^2+1\ge1\\x^2-x+1\ge1\end{cases}}\)

Kết luận: \(S=\varnothing\)

12 tháng 4 2019

Ta có : x^4 - x^3 + 2x^2 - x + 1

= ( x^4 + 2x^2 + 1 ) - ( x^3 + x )

= ( x^2 + 1 )^2 - x( x^2 + 1 )

= (x^2 + 1) ( x^2 + 1 - x)

Vì x^2 > 0 và x^2-x + 1 > 0

Nên phương trình đã cho vô nghiệm

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc

29 tháng 4 2016

x^4+x^3+x^2+x+1=0

x=0 không là nghiệm của pt chia 2 vế cho x^2 ta được

x^2+x+1+1/x+1/x^2=0

(x^2+1/x^2)+(x+1/x)+1=0

đặt x+1/x=y=> x^2+1/x^2=y^2-2

=> y^2-2+y+1=0

<=> y^2+y-1=0

giải pt=> y=(-1+căn 5)/2 (1) hoặc y=(-1-căn 5)/2 (2)

với y=(1) thì pt trở thành x+1/x=(-1+căn 5)/2, giai pt => x thuộc rỗng

với y=(2) thì pt trở thành x+1/x=(-1-căn 5)/2, giai pt => x thuộc rỗng 

vậy phương trình trên vô nghiệm