Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5(x+2)=2(x+7)+3x-4
<=>5x+10=2x+14+3x-4
<=>5x+10=5x+10
=>PT sau vô nghiệm
đpcm.
b)(x+2)2=x2+2x+2 (x+2)
<=>x2+4x+4=x2+4x+4
=> PT sau vô nghiệm
=>đpcm.
a, \(x^4-2x^3+4x^2-3x+2=x^4-x^3+x^2-x^3+x^2-x+2x^2-2x+2\)
\(=x^2\left(x^2-x+1\right)-x\left(x^2-x+1\right)+2\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2-x+2\right)\)
\(=\left(x^2-x+\frac{1}{4}+\frac{3}{4}\right)\left(x^2-x+\frac{1}{4}+\frac{7}{4}\right)=\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\left[\left(x-\frac{1}{2}\right)^2+\frac{7}{4}\right]>0\) (dpdcm)
b, \(x^6+x^5+x^4+x^2+x+1=x^4\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^4+1\right)=\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]\left(x^4+1\right)>0\) (đpcm)
\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)
\(\text{CM vô số nghiệm}\)
\(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)
Ta có : x^4 - x^3 + 2x^2 - x + 1
= ( x^4 + 2x^2 + 1 ) - ( x^3 + x )
= ( x^2 + 1 )^2 - x( x^2 + 1 )
= (x^2 + 1) ( x^2 + 1 - x)
vì x^2 > 0 và x^2-x + 1 > 0
Nên pt đã cho vô nghiệm
1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0
\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0
\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0
\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0
\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0
VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x
x^2+1>0\(\forall\)x
\(\Rightarrow\)Phương trình đã cho vô nghiệm
1)x^4 - x^3 + 2x^2 - x + 1 = 0
(x^4 + 2x^2 +1) - (x^3+x)= 0
x^4 + 2x^2 + 1 = x^3 - x
(x^2 + 1)^2 = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
(x^2+1)(x^2+1) = x(x^2 + 1)
x^2+1 = x (vô lí)
==> PT vô nghiệm
Ta đặt phương trình x4 - x3 + 2x2 - x + 1 = 0 là (1).
Biến đổi phương trình (1) thành:
(x2 + 1)2 - x(x2 + 1) = 0 <=> (x2 + 1)(x2 + 1 - x) = 0
Có \(\hept{\begin{cases}x^2+1\ge1\\x^2-x+1\ge1\end{cases}}\)
Kết luận: \(S=\varnothing\)
Ta có : x^4 - x^3 + 2x^2 - x + 1
= ( x^4 + 2x^2 + 1 ) - ( x^3 + x )
= ( x^2 + 1 )^2 - x( x^2 + 1 )
= (x^2 + 1) ( x^2 + 1 - x)
Vì x^2 > 0 và x^2-x + 1 > 0
Nên phương trình đã cho vô nghiệm
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
x^4+x^3+x^2+x+1=0
x=0 không là nghiệm của pt chia 2 vế cho x^2 ta được
x^2+x+1+1/x+1/x^2=0
(x^2+1/x^2)+(x+1/x)+1=0
đặt x+1/x=y=> x^2+1/x^2=y^2-2
=> y^2-2+y+1=0
<=> y^2+y-1=0
giải pt=> y=(-1+căn 5)/2 (1) hoặc y=(-1-căn 5)/2 (2)
với y=(1) thì pt trở thành x+1/x=(-1+căn 5)/2, giai pt => x thuộc rỗng
với y=(2) thì pt trở thành x+1/x=(-1-căn 5)/2, giai pt => x thuộc rỗng
vậy phương trình trên vô nghiệm
Phải là x4-x3+2x2-x+1=0
Ta có : x4 - x3 + 2x2 - x + 1
= ( x4 + 2x2 + 1 ) - ( x3 + x )
= ( x2 + 1 )2 - x( x2 + 1 )
= (x2 + 1) ( x2 + 1 - x)
vì x2 > 0 và x2-x + 1 > 0
Nên pt đã cho vô nghiệm.
ngu thế bài này mà ko bài này ko biết làm