Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{2}x\right)-2.\sqrt{2}x.\sqrt{2}+\left(\sqrt{2}\right)^2-12=0\)
<=> \(\left(\sqrt{2}x-\sqrt{2}\right)^2=12\)
<=> \(\sqrt{2}x-\sqrt{2}=12\)=> x ko có nghiệm nguyên
Hoặc \(\sqrt{2}x-\sqrt{2}=-12\) => x ko có nghiệm nguyên
( cho mình ^^)
\(2x^2-4y=10\)\(\Leftrightarrow2\left(x^2-2y\right)=10\Leftrightarrow x^2-2y=5\Leftrightarrow x^2-5=2y\)
Ta thấy: 5 là số lẻ,2y là số chẵn.\(\Rightarrow x^2\)là số lẻ do đó x lẻ luôn tìm được y tương ứng.
VD:x=5,y=10 xem lại đề
Ai T.I.C.K cho mk may mắn cả tuần
Mk T.I.C.K lại cho
Mình làm như thế này không biết đúng không:
x2=5+2yx2=5+2y
Xét x chẵn pt vô nghiệm
Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)
4k2+4k+1=5+2y4k2+4k+1=5+2y
⇔4k2+4k−2y=4⇔4k2+4k−2y=4
⇔⇔2k2+2k−y=22k2+2k−y=2
Suy ra y chẵn trái với giả thiết
Do đó pt trên không có nghiệm nguyên
Mình làm như thế này không biết đúng không:
x2=5+2yx2=5+2y
Xét x chẵn pt vô nghiệm
Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)
4k2+4k+1=5+2y4k2+4k+1=5+2y
⇔4k2+4k−2y=4⇔4k2+4k−2y=4
⇔⇔2k2+2k−y=2v
ta có:
2x^2-4y=10
<=>2x^2-4y+2=12
<=>2(x^2-2y+1)=12
<=>(x-y)^2=6
<=>x-y=căn 6
vì căn 6 là số vô tỉ nên x-y là 1 số vô tỉ (1).
giả sử x,y là 2 nghiệm nguyên thì x-y nguyên trái với (1). Vậy pt ko có nghiệm nguyên.
Phương trình trên không phải không có nghiệm mà có rất nhiều nghiệm
Ta có 2x^2-4y=10 <=>2(x^2-2y)=10
<=>x^2-2y=5
Ta thấy 2y là số chẵn mà 5 là số lẻ =>x^2 là số lẻ từ đó ta cứ cho x là số lẻ sau đó suy ra giá trị của y
Ví dụ với x=3 =>x^2=9=>y=2
x=5=>x^2=25=>y=10
Cứ như thế ta sẽ tìm được tất cả các cặp số
có nghiệm nguyên
x=3 ; y =2 thay vào ra 10