Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\log_{2013}\left\{\log_4\left(\log_2256\right)-\log_{0,25}\left[\log_9\left(\log_464\right)\right]\right\}=\log_{2013}\left\{\log_4\left(\log_22^8\right)-\log_{0,25}\left[\log_9\left(\log_44^3\right)\right]\right\}\)
\(=\log_{2013}\left\{\log_48-\log_{0,25}\log_93\right\}=\log_{2013}\left\{\log_{2^2}2^2-\log_{\left(\frac{1}{2}\right)^2}\frac{1}{2}\right\}\)
\(=\log_{2013}\left(\frac{3}{2}-\frac{1}{2}\right)=\log_{2013}1=0\)
\(2^x=x^2\Rightarrow xln2=2lnx\Rightarrow\frac{ln2}{2}=\frac{lnx}{x}\Rightarrow x=2\)
Ta cũng có \(\frac{2ln2}{2.2}=\frac{lnx}{x}\Rightarrow\frac{ln4}{4}=\frac{lnx}{x}\Rightarrow x=4\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=4\end{matrix}\right.\)
Pt dưới: \(4logx-\frac{logx}{loge}=log4\)
\(\Leftrightarrow logx\left(4-ln10\right)=log4\Leftrightarrow logx\left(ln\left(\frac{e^4}{10}\right)\right)=log4\)
\(\Rightarrow logx=\frac{log4}{ln\left(\frac{e^4}{10}\right)}=log4.log_{\frac{e^4}{10}}e\)
\(\Rightarrow x=10^{log4.log_{\frac{e^4}{10}}e}=\left(10^{log4}\right)^{log_{\frac{e^4}{10}}e}=2^{2.log_{\frac{e^4}{10}}e}\)
\(\Rightarrow\left\{{}\begin{matrix}c=2\\d=4\end{matrix}\right.\)
Bạn tự thay kết quả và tính
a) Áp dụng công thức: \(\log_ab.\log_bc=\log_ac\)
b) Vì \(\dfrac{1}{\log_{a^k}b}=\dfrac{1}{\dfrac{1}{k}\log_ab}=\dfrac{k}{\log_ab}\) nên biểu thức vế trái bằng:
\(VT=\dfrac{1}{\log_ab}\left(1+2+...+n\right)\)
\(=\dfrac{1}{\log_ab}.\dfrac{n\left(n+1\right)}{2}=VP\)
Ta có :
\(a=\log_{12}18=\frac{\log_218}{\log_212}=\frac{\log_2\left(2.3^2\right)}{\log_2\left(2^2.3\right)}=\frac{1+2\log_23}{2+\log_23}\)
\(\Rightarrow a\left(a+\log_23\right)=1+2\log_23\Leftrightarrow\log_23=\frac{1-2a}{a-2}\left(1\right)\)
\(b=\log_{24}54=\frac{\log_254}{\log_224}=\frac{\log_2\left(2.3^2\right)}{\log_2\left(2^2.3\right)}=\frac{1+3\log_23}{3+\log_23}\)
\(\Rightarrow b\left(3+\log_23\right)=1+3\log_23\Leftrightarrow\log_23=\frac{1-3b}{b-3}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{1-2a}{a-2}=\frac{1-3b}{b-3}\Leftrightarrow\left(1-2a\right)\left(b-3\right)=\left(1-3b\right)\left(a-2\right)\)
\(\Leftrightarrow ab+5\left(a-b\right)=1\Rightarrow\) Điều phải chứng minh
a. \(\log_{2011}2012\) và \(\log_{2012}2013\)
Ta luôn có : \(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi \(n>1\) (*)
Thật vậy :
- Ta có : \(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\Rightarrow\log_{n+1}\left(n+1\right)^2>\log_{n+1}\left[n\left(n+2\right)\right]\)
hay :
\(2>\log_{n+1}n+\log_{n+1}\left(n+2\right)\) (1)
- Áp dụng Bất đẳng thức Cauchy, ta có :
\(\log_{n+1}n+\log_{n+1}\left(n+1\right)>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\) (2)
((2) không xảy ra dấu "=" vì \(\log_{n+1}n\ne\log_{n+1}\left(n+2\right)\) )
- Từ (1) và (2) \(\Rightarrow2>2\sqrt{\log_{n+1}n.\log_{n+1}\left(n+2\right)}\)
\(\Rightarrow1>\log_{n+1}n.\log_{n+1}\left(n+2\right)\)
\(\Leftrightarrow\frac{1}{\log_{n+1}n}>\log_{n+1}\left(n+2\right)\)
\(\Leftrightarrow\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\)
Áp dụng (*) với \(n=2011\Rightarrow\log_{2011}2012>\log_{2012}2013\)
b. \(\log_{13}150\) và \(\log_{17}290\)
Ta có : \(\log_{12}150< \log_{13}169=2=\log_{17}289< \log_{17}290\Rightarrow\log_{13}150< \log_{17}290\)
c. \(\log_34\) và \(\log_{10}11\)
Ta luôn có : \(\log_a\left(a+1\right)>\log_{a+1}\left(a+2\right)\) với \(0< a\ne1\) (*)
Tương tự câu (a), áp dụng liên tiếp (*) ta được :
\(\log_34>\log_45>\log_56>\log_67>\log_78>\log_89>\log_910>\log_{10}11\)
hay \(\log_34>\log_{10}11\)
a) Tập xác định của hàm số là :
\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)
b) Tập xác định của hàm số là :
\(D=\left(1;+\infty\right)\)
c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)
Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)
d) Hàm số xác định khi và chỉ khi
\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)
Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)
Lời giải:
Giả sử \(\log _{3}a=\log_4b=\log_{12}c=\log_{13}(a+b+c)=t\)
\(\Rightarrow 13^t=3^t+4^t+12^t\)
\(\Rightarrow \left ( \frac{3}{13} \right )^t+\left ( \frac{4}{13} \right )^t+\left ( \frac{12}{13} \right )^t=1\)
Xét vế trái , đạo hàm ta thấy hàm luôn nghịch biến nên phương trình có duy nhất một nghiệm \(t=2\)
Khi đó \(\log_{abc}144=\log_{144^t}144=\frac{1}{t}=\frac{1}{2}\)
Đáp án B
cho em hỏi tại sao lại có 3^t +4^t +12^t=13^t. Với lại em không hiểu chỗ tại sao hàm số nghịch biến. Và tại sao từ \(\log_{abc}144=\log144_{144^t}=\dfrac{1}{t}\)
Ta có : \(\left(a^{\log_37}\right)^{\log_37}+\left(b^{\log_711}\right)^{\log_711}+\left(c^{\log_{11}25}\right)^{\log_{11}25}=27^{^{\log_37}}+49^{^{\log_711}}+\left(\sqrt{11}\right)^{^{\log_{11}25}}\)
\(=7^3+11^2+25^{\frac{1}{2}}=469\)
Ta có : \(a^2+4b^2=12ab\Leftrightarrow a^2+4ab+4b^2=16ab\)
\(\Leftrightarrow\left(a+2b\right)^2=16ab\Leftrightarrow\left(\frac{a+2b}{4}\right)^2=ab\)
\(\Rightarrow\log_{2013}\left(\frac{a+2b}{4}\right)^2=\log_{2013}\left(ab\right)\)
\(\Leftrightarrow2\left[\log_{2013}\left(a+2b\right)-2\log_{2013}2\right]=\log_{2013}a+\log_{2013}b\)
\(\Leftrightarrow\log_{2013}\left(a+2b\right)-2\log_{2013}2=\frac{1}{2}\left(\log_{2013}a+\log_{2013}b\right)\)
=> Điều phải chứng minh