\(⋮\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

a) Gọi tích ba số tự nhiên liên tiếp là n(n+1)(n+2)

=> Có 3 TH

TH1: n chia hết cho 3 => n(n+1)(n+2) chia hết cho 3

TH2: n = 3k + 1 => n+2 chia hết cho 3 => n(n+1)(n+2) chia hết cho 3

TH3: n = 3k+2 => n + 1 chia hết cho 3 => n(n+1)(n+2) chia hết cho 3

=> Tích 3 số tự nhiên liên tiếp đầu chia hết cho 3

b)

Xét:

Nếu n lẻ thì n + 5 chẵn => (n+5)(n+12) chia hết cho 2

Nếu n chẵn thì n + 12 chẵn => (n+5)(n+12) chia hết cho 2

Vậy với mọi n thì (n+5)(n+12) chia hết cho 2

19 tháng 10 2016

Ta có :

\(A=n^5-5n^3+4n=n\left(n+1\right)=n\left(n-1\right)\left(n-2\right)\left(n+1\right)\left(n+2\right)\)

chia hết cho \(2,3,4,5.\)

b ) Cần chứng minh 

\(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1,n\in N\)*

là một số chính phương .

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)

Đặt :   \(n^2+3n=y\) thì 

            \(A=y\left(y+2\right)+1=y^2+2y+1\left(y+1\right)^2\)

         \(\Rightarrow A=\left(n^2+3n+1\right)^2,n\in N\)*

21 tháng 1 2018

Bài 1 : 

Có : P = n^2+n+2 = n.(n+1)+2

Ta thấy n và n+1 là 2 số tự nhiên liên tiếp

=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6

=> P có tận cùng là : 2 hoặc 4 hoặc 8 

=> P ko chia hết cho 5

=> ĐPCM

Tk mk nha

21 tháng 1 2018

Bài 2 : 

Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6

= a.(a+1).(a+2)/6

Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> a.(a+1).(a+2) chia hết cho 2 và 3

=> a.(a+1).(a+2) chia hết cho 6

=> A thuộc Z

Tk mk nha

8 tháng 1 2018

a) 9.10n + 18 = 9(10n + 2) \(⋮\) 9

Mặt khác: 9(10n + 2) = 3.3(10n + 2)\(⋮\) 3

=> 9.10n + 18 \(⋮\) 9.3

=> 9.10n + 18 \(⋮\) 27.

b) 92n + 14 = 81n + 14.

Vì 81n có chữ số tận cùng là 1 nên 81n + 14 có chữ số tận cùng là 5.

=> 81n + 14 \(⋮\) 5

=> 92n + 14 \(⋮\) 5

c: \(1^3+7^3+3^3+5^3\)

\(=\left(1+7\right)\left(1^2-1\cdot7+7^2\right)+\left(3+5\right)\cdot\left(3^2-3\cdot5+5^2\right)\)

\(=8\cdot\left(1-7+49+9-15+25\right)⋮2^3\)(đpcm)

4 tháng 8 2015

nhìn thấy thì chóng mặt

chỉ cần làm 1 trong 8 câu là đủ rồi

28 tháng 8 2016

a) \(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)=\left(3^n.3^2+3^n\right)-\left(2^n.2^2+2^n\right)\)

\(=\left[3^n.\left(3^2+1\right)\right]-\left[2^n.\left(2^2+1\right)\right]=\left(3^n.10\right)-\left(2^{n-1}.2.5\right)=\left(3^n.10\right)-\left(2^{n-1}.10\right)\)

Do: 3n . 10 chia hết cho 10 và 2n - 1 . 10 chia hết cho 10

=> ( 3n . 10 ) - ( 2n - 1 . 10 ) chia hết cho 10  => 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10