K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

a. Áp dụng bất đẳng thức Cauchy ta được 

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\) (1)

((1) không có dấu bằng vì \(\log_23\ne\log_32\))

Ta có :

                 \(\log_23+\log_32< \frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_32}-\frac{5}{2}< 0\)

              \(\Leftrightarrow2\log^2_23-5\log_23+2< 0\)

              \(\Leftrightarrow\left(2\log_23-1\right)\left(\log_23-2\right)< 0\)  (*)

Mặt khác : \(\begin{cases}2\log_23-1>0\\\log_23-3< 0\end{cases}\)  \(\Rightarrow\) (*) đúng

                                               \(\Rightarrow\log_23+\log_32< \frac{5}{2}\) (2)

Từ (1) và (2) \(\Rightarrow2< \log_23+\log_32< \frac{5}{2}\) => Điều phải chứng minh

 

b. Ta có \(\log_{\frac{1}{2}}3+\log_3\frac{1}{2}=-\left(\log_23+\log_32\right)\)  (1)

Chứng minh như câu a ta được :

                \(\log_23+\log_32>2\Rightarrow-\left(\log_23+\log_32\right)< -2\)  (2)

Từ (1) và (2) \(\Rightarrow\log_{\frac{1}{2}}3+\log_3\frac{1}{2}< -2\) => Điều phải chứng minh

 

26 tháng 3 2016

a) \(A=\log_{5^{-2}}5^{\frac{5}{4}}=-\frac{1}{2}.\frac{5}{4}.\log_55=-\frac{5}{8}\)

b) \(B=9^{\frac{1}{2}\log_22-2\log_{27}3}=3^{\log_32-\frac{3}{4}\log_33}=\frac{2}{3^{\frac{3}{4}}}=\frac{2}{3\sqrt[3]{3}}\)

c) \(C=\log_3\log_29=\log_3\log_22^3=\log_33=1\)

d) Ta có \(D=\log_{\frac{1}{3}}6^2-\log_{\frac{1}{3}}400^{\frac{1}{2}}+\log_{\frac{1}{3}}\left(\sqrt[3]{45}\right)\)

                   \(=\log_{\frac{1}{3}}36-\log_{\frac{1}{3}}20+\log_{\frac{1}{3}}45\)

                   \(=\log_{\frac{1}{3}}\frac{36.45}{20}=\log_{3^{-1}}81=-\log_33^4=-4\)

26 tháng 3 2016

a) Áp dụng bất đẳng thức Cauchy cho các số dương, ta có :

\(\log_23+\log_32>2\sqrt{\log_23.\log_32}=2\sqrt{1}=2\)

Không xảy ra dấu "=" vì \(\log_23\ne\log_32\)

Mặt khác, ta lại có :

\(\log_23+\log_32<\frac{5}{2}\Leftrightarrow\log_23+\frac{1}{\log_23}-\frac{5}{2}<0\)

                             \(\Leftrightarrow2\log^2_23-5\log_23+2<0\)

                            \(\Leftrightarrow\left(\log_23-1\right)\left(\log_23-2\right)<0\) (*)

Hơn nữa, \(2\log_23>2\log_22>1\) nên \(2\log_23-1>0\)

Mà \(\log_23<\log_24=2\Rightarrow\log_23-2<0\)

Từ đó suy ra (*) luôn đúng. Vậy \(2<\log_23+\log_32<\frac{5}{2}\)

b) Vì \(a,b\ge1\) nên \(\ln a,\ln b,\ln\frac{a+b}{2}\) không âm. 

Áp dụng bất đẳng thức Cauchy ta có

\(\ln a+\ln b\ge2\sqrt{\ln a.\ln b}\)

Suy ra 

\(2\left(\ln a+\ln b\right)\ge\ln a+\ln b+2\sqrt{\ln a\ln b}=\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

Mặt khác :

\(\frac{a+b}{2}\ge\sqrt{ab}\Rightarrow\ln\frac{a+b}{2}\ge\frac{1}{2}\left(\ln a+\ln b\right)\)

Từ đó ta thu được :

\(\ln\frac{a+b}{2}\ge\frac{1}{4}\left(\sqrt{\ln a}+\sqrt{\ln b}\right)^2\)

hay \(\frac{\sqrt{\ln a}+\sqrt{\ln b}}{2}\le\sqrt{\ln\frac{a+b}{2}}\)

c) Ta chứng minh bài toán tổng quát :

\(\log_n\left(n+1\right)>\log_{n+1}\left(n+2\right)\) với mọi n >1

Thật vậy, 

\(\left(n+1\right)^2=n\left(n+2\right)+1>n\left(n+2\right)>1\) 

suy ra :

\(\log_{\left(n+1\right)^2}n\left(n+2\right)<1\Leftrightarrow\frac{1}{2}\log_{n+1}n\left(n+2\right)<1\)

                                  \(\Leftrightarrow\log_{n+1}n+\log_{\left(n+1\right)}n\left(n+2\right)<2\)

Áp dụng bất đẳng thức Cauchy ta có :

\(2>\log_{\left(n+1\right)}n+\log_{\left(n+1\right)}n\left(n+2\right)>2\sqrt{\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)}\)

Do đó ta có :

\(1>\log_{\left(n+1\right)}n.\log_{\left(n+1\right)}n\left(n+2\right)\) và \(\log_n\left(n+1>\right)\log_{\left(n+1\right)}\left(n+2\right)\) với mọi n>1

 

27 tháng 4 2017

Hỏi đáp Toán

Hỏi đáp Toán

Hỏi đáp Toán

26 tháng 3 2016

a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)

b) \(\log_23<\log_24=2=\log_39<\log_311\)

c) Đưa về cùng 1 lôgarit cơ số 10, ta có 

\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)

\(lg19-lg2=lg\frac{19}{2}\)

So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :

\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)

Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)

Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)

d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)

Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\) 

Ta có :

\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)

\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)

\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)

Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)

Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)

và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)

 

12 tháng 5 2016

Ta có : \(\log_{\frac{a}{b}}^2\frac{c}{b}=\log_{\frac{a}{b}}^2\frac{b}{c};\log_{\frac{b}{c}}^2\frac{a}{c}=\log_{\frac{b}{c}}^2\frac{c}{a};\log_{\frac{c}{a}}^2\frac{b}{a}=\log_{\frac{c}{a}}^2\frac{a}{b}\)

\(\Rightarrow\log_{\frac{a}{b}}^2\frac{c}{b}.\log_{\frac{b}{c}}^2\frac{a}{c}.\log_{\frac{c}{a}}^2\frac{b}{c}=\log_{\frac{a}{b}}^2\frac{c}{b}.\log^2_{\frac{b}{c}}\frac{c}{a}\log_{\frac{c}{a}}^2\frac{a}{b}=\left(\log_{\frac{a}{b}}\frac{c}{b}.\log_{\frac{b}{c}}\frac{c}{a}\log_{\frac{c}{a}}\frac{a}{b}\right)^2=1^2=1\)

\(\Rightarrow\) Trong 3 số không âm \(\log_{\frac{a}{b}}^2\frac{c}{b};\log^2_{\frac{b}{c}}\frac{c}{a};\log_{\frac{c}{a}}^2\frac{a}{b}\) luôn có ít nhất 1 số lớn hơn 1

 

14 tháng 5 2016

Ta có :

\(2\log_45=\log_25\)

\(\log_{\sqrt{2}}\frac{4}{\sqrt{3}}=\log_2\frac{4}{\sqrt{3}}=\log_2\frac{16}{3}\)

\(\log_9\frac{1}{4}=\log_{3^2}\left(\frac{1}{2}\right)^2=\log_3\frac{1}{2}\)

Mà :

\(\begin{cases}\frac{1}{2}< \frac{\pi}{4}\Rightarrow\log_3\frac{1}{2}< \log_3\frac{\pi}{4}\\\log_3\frac{\pi}{4}< 0< \log_25\\5< \frac{16}{3}\Rightarrow\log_25< \log_2\frac{16}{3}\end{cases}\)  \(\Rightarrow\log_3\frac{1}{2}< \log_3\frac{\pi}{4}< \log_25< \log_2\frac{16}{3}\)

Hay : 

\(\log_9\frac{1}{4}< \log_3\frac{\pi}{4}< 2\log_45< \log_{\sqrt{2}}\frac{4}{\sqrt{3}}\)

Vậy thứ tự giảm dần là :

\(\log_{\sqrt{2}}\frac{4}{\sqrt{3}};2\log_45;\log_3\frac{\pi}{4};\log_9\frac{1}{4}\)

30 tháng 3 2016

Điều kiện \(x^2-1>0\Leftrightarrow\left|x\right|>1\)

Bất phương trình tương đương với :

\(\log_3\log_{\frac{1}{2}}\left(x^2-1\right)<\log_3\Leftrightarrow0<\log_{\frac{1}{2}}\left(x^2-1\right)<3\)

\(\Leftrightarrow\log_{\frac{1}{2}}1<\log_{\frac{1}{2}}\left(x^2-1\right)<\log_{\frac{1}{2}}\frac{1}{8}\Leftrightarrow1>x^2-1>\frac{1}{8}\)

\(\Leftrightarrow2>x^2>\frac{9}{8}\)

\(\Leftrightarrow\sqrt{2}>\left|x\right|>\frac{3}{2\sqrt{2}}\) (Thỏa mãn)

Vậy tập nghiệm của bất phương trình là \(D=\left(-\sqrt{2};\frac{-3}{2\sqrt{2}}\right)\cup\left(\frac{3}{2\sqrt{2}};\sqrt{2}\right)\)

26 tháng 3 2016

a) Tập xác định của hàm số là :

\(D=\left(-\infty;-4\right)\cup\left(4;+\infty\right)\)

b) Tập xác định của hàm số là :

\(D=\left(1;+\infty\right)\)

c) Hàm số xác định khi và chỉ khi \(\begin{cases}x^2-3x+2\ge0\\\sqrt{x^2-3x+2}+4-x\ge1^{ }\end{cases}\) \(\Leftrightarrow\) \(x\le1\) V \(x\ge2\)

Tập xác định là \(D=\left(-\infty;1\right)\cup\left(2;+\infty\right)\)

d) Hàm số xác định khi và chỉ khi

\(\begin{cases}\left|x-3\right|-\left|8-x\right|\ge0\\x-1>0\\\log_{0,5}\left(x-1\right)\le0\\x^2-2x-8>0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}\left(x-3\right)^2\ge\left(8-x\right)^2\\x>1\\x-1\ge1\\x<-2,x>4\end{cases}\) \(\Leftrightarrow\)\(x\ge\frac{11}{2}\)

Vậy tập xác định là \(D=\left(\frac{11}{2};+\infty\right)\)

12 tháng 5 2016

Ta có : \(a^2+4b^2=12ab\Leftrightarrow a^2+4ab+4b^2=16ab\)

                                      \(\Leftrightarrow\left(a+2b\right)^2=16ab\Leftrightarrow\left(\frac{a+2b}{4}\right)^2=ab\)

 \(\Rightarrow\log_{2013}\left(\frac{a+2b}{4}\right)^2=\log_{2013}\left(ab\right)\)

\(\Leftrightarrow2\left[\log_{2013}\left(a+2b\right)-2\log_{2013}2\right]=\log_{2013}a+\log_{2013}b\)

\(\Leftrightarrow\log_{2013}\left(a+2b\right)-2\log_{2013}2=\frac{1}{2}\left(\log_{2013}a+\log_{2013}b\right)\)

=> Điều phải chứng minh