Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Giải:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)
\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)
Ta có:
\(2x-3⋮x+1\)
\(\Rightarrow\left(2x+2\right)-5⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)
+) \(x+1=1\Rightarrow x=0\)
+) \(x+1=-1\Rightarrow x=-2\)
+) \(x+1=5\Rightarrow x=4\)
+) \(x+1=-5\Rightarrow x=-6\)
Vậy \(x\in\left\{0;-2;4;-6\right\}\)
\(\Rightarrow5⋮x+1\)
1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)
2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)
\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)
\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)
a) Ta có: 2|x + 2| \(\ge\)0 \(\forall\)x
=> 2|x + 2| + 15 \(\ge\)15 \(\forall\)x
Hay A \(\ge\)15 \(\forall\)x
Dấu "=" xảy ra <=>x + 2 = 0 <=> x = -2
Vậy Min A = 15 tại x = -2
b) Ta có: 2(x + 5)4 \(\ge\)0 \(\forall\)x
3|x + y + 2| \(\ge\)0 \(\forall\)x;y
=> 20 - 2(x + 5)4 - 3|x + y + 2| \(\le\)20 \(\forall\)x;y
Hay B \(\le\)20 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+5=0\\x+y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-x\end{cases}}\) <=> \(\hept{\begin{cases}x=-5\\y=-2-\left(-5\right)=3\end{cases}}\)
Vậy Max B = 20 tại x = -5 và y = 3
ADTCDTSBN:
có: \(\frac{x-1}{2}=\frac{y}{3}=\frac{z+2}{6}=\frac{x-1+y-z-2}{2+3-6}=\frac{-5-3}{-1}=8\)
=> \(\frac{x-1}{2}=8\Rightarrow x-1=16\Rightarrow x=17\)
=>...
bn tự làm tiếp nha
ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+b+c};\frac{c}{c+a}>\frac{c}{c+a+b}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)(*)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=2\)(**)
Từ (*);(**) \(\Rightarrow1< A< 2\Rightarrow A\notin Z\)
Theo bài ra ta có :
\(A\left(x\right)+B\left(x\right)=6x^5-x^2+1\)
\(2x^4-3x^3+3-5x+B\left(x\right)=6x^5-x^2+1\)
\(B\left(x\right)=6x^5-x^2+1-2x^4+3x^3-3+5x\)
\(B\left(x\right)=6x^5-x^2-2-2x^4+3x^3+5x\)
1)Ta có:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\)(đpcm)
Ta có:A=\(\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{c+a}\)
\(\Rightarrow A=\frac{a}{b+c}=\frac{c}{a+b}=\frac{b}{a+c}=\frac{a+c+b}{b+c+a+b+a+c}\)\(\Rightarrow A=\frac{a+b+c}{2a+2b+2c}=\frac{\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy A=\(\frac{1}{2}\)
Theo đề ta có:
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\) với a,b,c khác 0 và b khác c.
CMR \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
=> \(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
=> \(\dfrac{1}{c}:\dfrac{1}{2}=\dfrac{1}{a}+\dfrac{1}{b}\Rightarrow\dfrac{1}{c}.\dfrac{2}{1}\)
= \(\dfrac{\left(a+b\right)}{ab}\Rightarrow\dfrac{2}{c}=\dfrac{\left(a+b\right)}{ab}\)
=> 2ab=ac+bc (1)
Mà \(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
=> \(a.\left(c-b\right)=b.\left(a-c\right)\)
=> ac-ab= ab-bc
=> 2ab+ ac + bc (2)
Từ (1) và (2) ta suy ra được điều cần CM là;
\(\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
\(a,a\left(1-b\right)+a\left(a^2-1\right)\)
\(=a-ab+a^3-a\)
\(=a^3-ab=a\left(a^2-b\right)\)\(\left(đpcm\right)\)
\(b,a\left(b-x\right)+x\left(a+b\right)\)
\(=ab-xa+xa+xb\)
\(=ab+xb=b\left(a+x\right)\)\(\left(đpcm\right)\)
a)
\(a\left(1-b\right)+a\left(a^2-1\right)\)
=\(a-ab+a^3-a=a^3-b=a\left(a^2-b\right)\) (đpcm)
b)
\(a\left(b-x\right)+x\left(a+b\right)\)
\(=ab-ax+xa+xb=ab+xb\)
\(=b\left(a+x\right)\left(đpcm\right)\)
hc tốt