\(x^2-2^y=2015\) khong co ngiem nguyen

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

tự làm nhé mình mới  lp 6 thôi à

26 tháng 10 2018

Không biết làm thì bớt xàm em ơi.

26 tháng 12 2015

( 2017 ; 2016 ; 2015 ) =1 

Nên không có x ;y thuộc Z nào thỏa mãn nhé 

Bạn chỉ cần giả sử 3 số đó có tồn tại là được.

11 tháng 3 2017

a ) Gọi 4 số tự nhiên liên tiếp là \(n;n+1;n+2;n+3\)

Ta có : \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n^4+6n^3+11n^2+6n+1=\left(x^2+3x+1\right)^2\) là số chính phương (đpcm)

b ) \(\frac{a^2+a+3}{a+1}=\frac{a\left(a+1\right)+3}{a+1}=a+\frac{3}{a+1}\)

\(\Rightarrow a+1\) thuộc Ư(3) = { -3; -1; 1; 3 }

=> a = { - 4; - 2; 0; 2 }

12 tháng 3 2017

a = { -4 ; - 2 ; 1 ; 3}

  nha

23 tháng 7 2015

Không. Vì biểu thức trên không tồn tại

16 tháng 12 2017

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{100^2}\)

\(A>\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{100.101}\)

\(A>\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(A>\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< \dfrac{99}{100}\)

Ta có: : \(\dfrac{99}{202}< A< \dfrac{99}{100}\)

Vậy \(A\) không phải số tự nhiên