K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2019

Gọi ƯCLN(4n+3;5n+4)=d (d\(\in\)Z; d\(\ne\)0)

\(\Rightarrow\) \(\left(4n+3\right)⋮d\) \(và\) \(\left(5n+4\right)⋮d\)

\(\Rightarrow5\left(4n+3\right)⋮d\) \(và\) \(4\left(5n+4\right)⋮d\)

\(\Rightarrow\left(20n+15\right)⋮d\) \(và\) \(\left(20n+16\right)⋮d\)

\(\Rightarrow\left(20n+16\right)-\left(20n+15\right)\)\(⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d\inƯ\left(1\right)\)

mà Ư(1)={1;-1}

\(\Rightarrow\) \(d\in\left\{1;-1\right\}\)

\(Khi\) \(đó\) \(phân\) \(số\) \(\frac{4n+3}{5n+4}\) \(là\) \(phân\) \(số\) \(tối\) \(giản\)

Vậy ...........

7 tháng 3 2018

a) gọi d là ƯCLN ( 5n+4;4n+3 )

=> 5n+4 chia hết cho d và 4n+3 chia hết cho d

=> (5n+4)-(4n+3) chia hết cho d

=> 4.(5n+4) - 5(4n+3) chia hết cho d

=> 20n+16-20n-15 chia hết cho d

=>  1 chia hết cho d

=> d=1 => 5n+4/4n+3 là phân số tối giản (ĐPCM)

6 tháng 4 2017

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

14 tháng 11 2017

a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau 

mk làm mẫu 1 câu nha

Gọi d là UCLN(n+1;2n+3)

=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d

=>4n+3 chia hết cho d

=> 4n+3-4n-2 chia hết cho d

<=> 1 chia hết cho d=> d= 1

d=1=>\(\frac{n+1}{2n+3}\)tối giản

14 tháng 11 2017

b) Gọi d là UCLN(2n+3;4n+8)

=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d

=>4n+8\(⋮\)d

=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2

mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1

vây \(\frac{2n+3}{4n+8}\)tối giản

17 tháng 3 2018

dựa vào tìm ước chung lớn nhất

dễ mà

cậu lm đc

17 tháng 3 2018

gọi d là ƯC(7n+4; 5n+3)

\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)

\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)

\(\Rightarrow35n+21-35n-20⋮d\)

\(\Rightarrow\left(35n-35n\right)+\left(21-20\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=\pm1\)

\(\Rightarrow\frac{7n+4}{5n+3}\) là phân số tối giản với mọi n 

DD
8 tháng 10 2021

a) Đặt \(\left(3n+4,5n+7\right)=d\).

Suy ra \(\hept{\begin{cases}3n+4⋮d\\5n+7⋮d\end{cases}}\Rightarrow3\left(5n+7\right)-5\left(3n+4\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

b) Đặt \(\left(4n-7,5n-9\right)=d\).

Suy ra \(\hept{\begin{cases}4n-7⋮d\\5n-9⋮d\end{cases}}\Rightarrow5\left(4n-7\right)-4\left(5n-9\right)=1⋮d\Rightarrow d=1\).

Suy ra đpcm. 

DD
7 tháng 11 2021

a) Đặt \(d=\left(4n+7,5n+9\right)\)

Suy ra 

\(\hept{\begin{cases}4n+7⋮d\\5n+9⋮d\end{cases}}\Rightarrow4\left(5n+9\right)-5\left(4n+7\right)=1⋮d\Rightarrow d=1\)

Do đó ta có đpcm. 

b) Đặt \(d=\left(4n^2+12n+1,n+3\right)\)

Suy ra

 \(\hept{\begin{cases}4n^2+12n+1⋮d\\n+3⋮d\end{cases}}\Rightarrow4n^2+12n+1-4n\left(n+3\right)=1⋮d\Rightarrow d=1\)

Do đó ta có đpcm. 

3 tháng 5 2019

gọi d là ƯC(7n + 4; 5n + 3) 

=> 7n + 4 và 5n + 3 ⋮ d

=> 5(7n + 4) và 7(5n + 3) ⋮ d

=> 35n + 20 và 35n + 21 ⋮ d

=> (35n + 21) - (35n +20) ⋮ d

=> 1 ⋮ d

=> d = + 1

=> 7n+4/5n+3 là phân số tối giản

Gọi a C Ư(7n+4;5n+3)

=>7n+4 và 5n+3 đều chia hết cho a

=>5(7n+4) và 7(5n+3) chia hết cho a

=>35n+20 và 35n+21 chia hết cho a

=>(35n+21) - (35n+20) chia hết cho a

=>1chia hết cho a

=>d C { + 1 }
Vậy7n+45n+3 là phân số tối giản