K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH
Thầy Hùng Olm
Manager VIP
5 tháng 3 2023

a. Giả sử n+1 và 2n+3 chia hết cho d. Vậy 2n+2 chia hết cho d. Do đó 2n+3-(2n+2)=1 chia hết cho d. Vì vậy d lớn nhất bằng 1 nên n+1 và 2n+3 là 2 số nguyên tố cùng nhau. Kết luận phân số tối giản với mọi n là số tự nhiên khác 0. Câu b làm tương tự

 

 

8 tháng 3 2017

a) Đặt ƯCLN(n+1; 2n+3) = d

\(\Rightarrow\left\{\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow\) \(\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow2n+3-2n-2⋮d\)

\(\Rightarrow1⋮d\)

\(\Leftrightarrow d\inƯ_{\left(1\right)}=1\)

Vậy phân số \(\frac{n+1}{2n+3}\) tối giản với mọi \(n\in N\).

b) Đặt ƯCLN(2n+3; 4n+8) = d.

\(\Rightarrow\left\{\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow4n+8-4n-6⋮d\)

\(\Rightarrow2⋮d\Leftrightarrow d\inƯ_{\left(2\right)}=\left\{1;2\right\}\)

\(2n+3=2n+2+1\)\(2n+2⋮2\) nhưng \(1⋮̸2\)

\(\Rightarrow d=1\)

Vậy phân số \(\frac{2n+3}{4n+8}\) tối giản với mọi \(n\in N\).

c) Đặt ƯCLN(3n+2; 5n+3) = d.

\(\Rightarrow\left\{\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\)

\(\Rightarrow15n+10-15n-9⋮d\)

\(\Rightarrow1⋮d\Leftrightarrow d\inƯ_{\left(1\right)}=1\)

Vậy phân số \(\frac{3n+2}{5n+3}\) tối giản với mọi \(n\in N\).

8 tháng 3 2017

Nếu các phân số trên là phân số tối giản thì ước chung lớn nhât của tử và mẫu của các phân số phải là 1

Gọi d là ước chung lớn nhất của tử và mẫu các phân số

a, n+1 chia hết cho d =>2n+2 chia hết cho d

2n+3 chia hết cho d

Từ hai giả thiết trên =>(2n+3)-(2n+2) chia hết cho d

1 chia hết cho d

=>d=1

Phân số trên tối giản với mọi số tự nhiên n

b,2n+3 chia hết cho d =>4n+6 chia hết cho d

4n+8 chia hết cho d

Từ hai giả thiết trên =>(4n+8)-(4n+6) chia hết cho d

=> 2 chia hết cho d

=>d thuộc {1;2}

Phân số trên chưa tối giản với mọi số tự nhiên n

c, 3n+2 chia hết cho d => 15n+10 chia hết cho d

5n+8 chia hết cho d => 15n+24 chia hết cho d

Từ hai giả thiết trên => (15n+24)-(15n+10) chia hết cho d

=> 14 chia hết cho d

=>d {1;2;7;14)

Phân số trên chưa tối giản với mọi số tự nhiên n

Mình làm xong rồi,nếu bài này chứng minh các phân số đều tối giản thì chắc chắn sai đề,không tin các bạn thử xem ở phân số b với c ý

24 tháng 1 2018

a, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: \(\left\{{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow1⋮d\)

=> d = 1

=> đpcm

25 tháng 1 2018

, Gọi d = ƯCLN(n+1,2n+3) (d thuộc N*)

Ta có: ⎧⎨⎩n+1⋮d2n+3⋮d⇒⎧⎨⎩2n+2⋮d2n+3⋮d{n+1⋮d2n+3⋮d⇒{2n+2⋮d2n+3⋮d

⇒2n+3−(2n+2)⋮d⇒2n+3−(2n+2)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

b, Gọi d = ƯCLN(2n+3,4n+8) (d thuộc N*)

ta có: ⎧⎨⎩2n+3⋮d4n+8⋮d⇒⎧⎨⎩4n+6⋮d4n+8⋮d{2n+3⋮d4n+8⋮d⇒{4n+6⋮d4n+8⋮d

⇒4n+8−(4n+6)⋮d⇒4n+8−(4n+6)⋮d

⇒2⋮d⇒2⋮d

⇒d∈{1;2}⇒d∈{1;2}

Mà 2n + 3 là số lẻ

=> d = 1

=> đpcm

c, Gọi d = ƯCLN(3n+2,5n+3) (d thuộc N*)

Ta có: ⎧⎨⎩3n+2⋮d5n+3⋮d⇒⎧⎨⎩15n+10⋮d15n+9⋮d{3n+2⋮d5n+3⋮d⇒{15n+10⋮d15n+9⋮d

⇒15n+10−(15n+9)⋮d⇒15n+10−(15n+9)⋮d

⇒1⋮d⇒1⋮d

=> d = 1

=> đpcm

11 tháng 12 2018

a ) 2n + 5 và 3n + 7 nguyên tố cùng nhau

Gọi ƯCLN ( 2n + 5 ; 3n + 7 ) = d

⇒ 2n + 5 ⋮ d và 3n + 7 ⋮ d

⇒ 3.( 2n + 5) ⋮ d ⇒ 6n + 15 ⋮ d

2.( 3n + 7) ⋮ d 6n + 14 ⋮ d

⇒ ( 6n + 15 ) - ( 6n + 14 ) ⋮ d

⇒ 1 ⋮ d ⇒ d ∈ Ư(1) ⇒ d=1

Vì ƯCLN ( 2n + 5 ; 3n + 7 ) = 1

nên 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau

d) \(\dfrac{n\left(n+1\right)}{2}\) và 2n + 1 nguyên tố cùng nhau

Gọi ƯCLN ( \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 ) = d

\(\dfrac{n\left(n+1\right)}{2}\) ⋮ d và 2n + 1 ⋮ d

⇒4. \(\dfrac{n\left(n+1\right)}{2}\) ⋮ d ⇒ 2n ( n + 1) ⋮ d

n ( 2n + 1) ⋮ d ⇒ 2n2 + n ⋮ d

⇒ 2n2 + 2n ⋮ d

2n2 + n ⋮ d

⇒ ( 2n2 + 2n ) - ( 2n2 + n ) ⋮ d

⇒ n ⋮ d

Vì n ⋮ d ⇒ 2n ⋮ d mà 2n +1 ⋮ d nên 1 ⋮ d

⇒ d = 1

Vì ƯCLN ( \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 =1 nên \(\dfrac{n\left(n+1\right)}{2}\)và 2n + 1 là hai số nguyên tố cùng nhau

11 tháng 12 2018

cần câu a và d nha , b , c biết làm rồikhocroi

15 tháng 3 2017

a,gọi \(d\inƯC\left(2n-1,3n-1\right)\) với \(d\in N\)

\(\Rightarrow2n-1⋮d;3n-1⋮d\)

\(\Rightarrow\left[3\left(2n-1\right)-2\left(3n-1\right)\right]⋮d\)

\(\Rightarrow\left[\left(6n-3\right)-\left(6n-2\right)\right]⋮d\)

\(\Rightarrow\left(6n-3-6n+2\right)⋮d\)

\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)\Rightarrow d=1\)

\(\RightarrowƯC\left(2n-1;3n-1\right)=1\)

\(\RightarrowƯCLN\left(2n-1;3n-1\right)=1\)

Vậy phân số \(\dfrac{2n-1}{3n-1}\) là phân số tối giản

15 tháng 3 2017

tôi chỉ viết phần a thôi nha

Bài 1:

Theo đề, ta có:

\(\dfrac{a+6}{b+14}=\dfrac{3}{7}\)

=>7a+42=3b+42

=>7a=3b

hay a/b=3/7

17 tháng 3 2017

kệ!! cái loại người chỉ dc cá mách lẻo là ko ai bằng! ra kia cho người khác trả lời câu hỏi!! chắn đường chắn lối tốn cả diện tích!!

17 tháng 3 2017

Ra chỗ khác ngay!!