Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UCLN( 14n +3 , 21n +4 ) =d (1)
=> 21n+4 và 14n+3 chia hết cho d => 21n+4 - 14n-3 chia hết cho d
=> 7n+1 chia hết cho d =>( 7n+1 ). 2 chia hết cho d => 14n +2 chia hết cho d
=> 14n+ 3 - 14n - 2 chia hết cho d =>1 chia hết cho d => d thuộc ước của 1 (2)
từ (1) ,(2) => dpcm
Gọi UCLN(14n+3,21n+4) =a
ta có :14n+3 chia hết cho a ; 21n+4 chia hết cho a
suy ra (21n+4) : 3 .2 chia hết cho a và 14n+3 chia hết cho a
suy ra 14n+2 chia hết cho a và 14n+3 chia hết cho a
suy ra (14n+3) - (14n+2) chia hết cho a
suy ra 14n+3 - 14n-2 chia hết cho a
suy ra 1 chia hết cho a
và a thuộc U(1) = 1
Vậy 14n+3/14n+4 là phân số tối giản
chúc bạn học tốt
Gọi d là : ƯCLN của 21n + 4 ; 14n + 3
Khi đó : 21n + 4 chia hết cho d ; 14n + 3 chia hết cho d
<=> 2(21n + 4) chia hết cho d ; 3(14n + 3) chia hết cho d
<=> 42n + 8 chia hết cho d ; 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN của 21n + 4 ; 14n + 3 = 1
Vậy phân số : \(\frac{21n+4}{14n+3}\) tối giản với mọi n nguyên
Gọi \(Ư\left(21n+4;14n+3\right)=d\)
Ta có :\(21n+4⋮d\)\(\Rightarrow42n+8⋮d\)(nhân với 2 )
\(14n+3⋮d\Rightarrow42n+9⋮d\)(nhân với 3)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
=> ĐPCM
Gọi d là ƯC(14n + 3 ; 21n + 5)
\(\Rightarrow\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3\left(14n+3\right)⋮d\\2\left(21n+5\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}42n+9⋮d\\42n+10⋮d\end{cases}}\)
=> ( 42n + 10 ) - ( 42n + 9 ) chia hết cho d
=> 42n + 10 - 42n - 9 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> ƯCLN(14n + 3 ; 21n + 5) = 1
=> \(\frac{14n+3}{21n+5}\)tối giản ( đpcm )
a) Gọi d = ƯCLN (12n + 1; 30n + 2)
=> 12n + 1 chia hết cho d
30n + 2 chia hết cho d
=> 5. (12n + 1) chia hết cho d và 2. (30n + 2) chia hết cho d
Hay 60n + 5 chia hết cho d và 60n + 4 chia hết cho d
=> 60n + 5 - (60n + 4) = 1 chia hết cho d => 1 chia hết cho d => d = 1
=> 12n + 1 và 30n + 2 nguyên tố cùng nhau => PS đã cho tối giản
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
GOI UCLN(21N+5;14N+3)LA D
{21N+5 CHIA HẾT CHO D
{14N+3 CHIA HET CHO D
BCNN(21;14)=7.3.2=42
{3.(21N+5)CHIA HẾT CHO D
{2.(14N+3) CHIA HẾT CHO D
{42.N+21 CHIA HẾT CHO D
{42N+22CHIA HET CHO D
=42N+21-42N+22 CHIA HET CHO D
=1CHIA HET CHO D
=D=1
gọi d là UCLN(14n+3;21n+4)
ta có:
3(14n+3)-2(21n+4) chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=>ps trên tối giản
goỊ Đ LÀ ƯC(21N+4/14N+3
=>14N+3 CHIA HẾT CHO Đ=>3(14N+12)CHIA HẾT CHO Đ
=>21N+4 CHIA HẾT CHO Đ=>2(21+8) CHI HẾT CHO Đ
=>42N+12 -42N+8 CHIA HẾT CHO Đ
=>1 CHIA HẾT CHO Đ =>Đ=1
VÌ 12N+4/14N+3 CÓ ƯC =1
=>21N+4/14N+3 LÀ PHÂN SỐ TỐI GIẢN
a. Để a tối giản thì UCLN của 12n+1 và 30n+2 là 1
Gọi UCLN của 12n+1 và 30n+2 là d
Ta có
\(12n+1⋮d;30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)=\left(60n+5\right)-\left(60n+4\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy A là phân số tối giản
b
Gọi UCLN của 14n+17 và 21n+25 là d
Ta có
\(14n+17⋮d;21n+25⋮d\)
\(\Rightarrow3\left(14n+17\right)-2\left(21n+25\right)=\left(42n+51\right)-\left(42n+50\right)=1⋮d\)
\(\Rightarrow d=1\)
vậy B là phân số tối giản
Từ đây mik rút ra công thức tổng quát nhé!
Nếu chỉ cần tìm được các số tự nhiên a, b, c, e, g sao cho
\(\left|a\left(bn+c\right)-d\left(en+g\right)=1\right|\)
Tức là \(ab=de;\left|ac-dg\right|=1\)Thì
Chúng ta sẽ có \(\frac{bn+c}{en+g}\)và\(\frac{en+g}{bn+c}\)là các phân số tối giản
gọi d là UCLN(14n+3;21n+4)
ta có:
3(14n+3)-2(21n+4) chia hết cho d
=>(42n+9)-(42n+8) chia hết cho d
=>1 chia hết cho d
=>d=1
=> ps \(\frac{14n+3}{21n+4}\) tối giản
mk chỉ giải tắt thôi nha
gọi ƯCLN ( của tử và mẫu p/s )là d (d thuộc N sao)
=>tử chia hết cho d
mẫu cũng chia hết cho d
=> 3* tử -2*mẫu = 1 chia hết cho d( do tử và mẫu chia hết cho d)
nên d=1(do d thuộc N sao)
Do đó phân số trên tối giản
mình là người đầu tiên k mình nha