Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
Gọi UCLN ( n+ 1 ; n+ 2 ) = d ( d : hết cho 1 )
=> n+ 1 chia hết cho d (1)
=> n +2 chia hết cho d (2)
Từ (1) và (2) => n+ 2 - ( n+ 1) chia hết cho d
=> n+ 2 - n - 1 chia hết cho d
=> 1 chia hết cho d
mà 1 lại chia hết cho d
=> d = 1
=> UCLN(n+1;n+2) = 1
=> n+1/n+2 là p/s tối giản
Giả sử ƯCLN của (5n+1) và (6n+1) là d, ta cần chứng minh d = 1.
Thật vậy: Do d là ƯCLN của (5n+1) và (6n+1) nên \(\hept{\begin{cases}5n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow6\left(5n+1\right)-5\left(6n+1\right)⋮d}\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy \(\frac{5n+1}{6n+1}\) là phân số tối giản.
\(\frac{5n+1}{6n+1}\)là phân số tối giản vì
\(\frac{5n+1}{6n+1}=\frac{5}{6}+\frac{n+1}{n+1}=\frac{5}{6}+1\)
Mà 5/6 là phân số tối giản nên 5n+1/6n+1 tối giản
Gọi d là ƯCLN ( n+1; n+2 )
=> n + 1 ⋮ d
=> n + 2 ⋮ d
=> [ n + 2 - n + 1 ] ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN ( n + 1; n + 2 ) = 1 => n + 1 / n + 2 là p/s tối giản