Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt UCLN(12n + 1 ; 30n + 2) = d
12n + 1 chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 60n + 4 chia hết cho d
UCLN(60n + 5 ; 60n + 4) = 1
=> d = 1
Vậy 12n + 1 / 30n + 2 luôn tối giản
Đặt d là ƯCLN(12n+1,30n+2)=>12n+1,30n+2 đều chia hết cho d=>60n+5 và 60n+4 chia hết cho d.Vì vậy nên ta có:
(60n+5)-(60n+4) chia hết cho d
=60n+5-60n-4 chia hết cho d
=1 chia hết cho d
=> d=1
Vì d=1 nên 12n+1,30n+2 là 2 số nguyên tố cùng nhau=>phân số trên là phân số tối giản(đpcm)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n + 1 và 30n + 2 = 1
Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n +1 và 30n +2 = 1
Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\) .
Chúc bạn học tốt !
GỌI Đ LÀ ƯC 12N+1,30N+2
=>12N+1 CHIA HẾT CHO Đ=>5(12n+4) cha hết cho đ
=>30n+2 ..........................đ=>2(30n+5)....................
=>60n+4 ,60n+5 chia hết cho Đ
=>1 chia hết cho Đ ,Đ=1
=>12n+1\30n+2 là p\s toois giản
Ta chứng minh phân số này có tử và mẫu là hai số nguyên tố cùng nhau .
Gọi dd là ước chung của 12n+130n+212n+130n+2
Ta có :
5(12n+1)−2(30n+2)=1⋮d5(12n+1)-2(30n+2)=1⋮d
Vậy d=1d=1 nên 12n+112n+1 nguyên tố cùng nhau.
⇒ 12n+130n+212n+130n+2 là phân số tối giản
\(A=\frac{12n+1}{30n+2}\)
Gọi \(d\inƯC\left(12n+1,30n+2\right)\)
Ta có :
\(5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Leftrightarrow60n+5-60n+4⋮d\)
\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)
Gọi d là ƯC ( 30n + 1 ; 15n + 2 )
=> 30n + 1 ⋮ d => 2.( 30n + 1 ) ⋮ d
=> 15n + 2 ⋮ d => 4.( 15n + 2 ) ⋮ d
=> [ 2.( 30n + 1 ) - 4.( 15n + 2 ) ] ⋮ d
=> [ ( 60n + 2 ) - ( 60n + 8 ) ] ⋮ d
=> - 6 ⋮ d => d = { - 6 ; - 1 ; 1 ; 6 }
Vì ƯC ( 30n + 1 ; 15n + 2 ) = { - 6 ; - 1 ; 1 ; 6 } nên 30n + 1 / 15n + 2 không là p/s tối giản
a)
Gọi d là ước chung của tử và mẫu
=> 12n + 1 chia hết cho d 60n + 5 chia hết cho d
=>
30n +2 chia hết cho d 60n + 4 chia hết cho d
=> ( 60n + 5 ) - ( 60n + 4 ) chia hết cho d
=> 1 chia hết cho d
=> d = 1 => ( đpcm )
Câu a) làm rồi mình làm câu b) nhé
\(b)\)Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}< 1\)
Vậy \(A< 1\)
mk làm 2 nha
C = \(\frac{5}{x-2}\)
=> x - 2 là ước của 5 hay 5 chia hết cho x - 2
Ư(5) = { +-1; +-5 }
Có: x - 2 = 1 => x = 1 + 2 = 3
x - 2 = - 1 => x = -1 + 2 = 1
x - 2 = 5 => x = 5 + 2 = 7
x - 2 = -5 => x = -5 + 2 = -3
Để Cmin => x = 1 để x - 2 = -1
=> \(\frac{5}{x-2}=-5\) đạt Cmin khi x = 1
GỌI UCLN[12N+1VAF30N+2] LÀ D
Suy ra 12n+1 chia hết cho d hoặc 30n+2 chia hết cho d suy ra 5.[12n+1] chia hết cho d hoặc 2.[30n+2] chia hết cho d
suy ra 60n+5 chi hết cho d hoặc 60n+2 chia hết cho d
suy ra [60n+5]-[60n+2] chia hết cho d
suy ra 60n+5-60n+2 chia hết cho d suy ra 1 chia hết cho d suy ra d thuộc ước của 1 và -1
vì d là ước chung lớn nhất nên d =1
VẬY PS12n+1/30n+2 là ps tối giản
Tôi giải đúng ko các cậu?
Gọi d = ƯC (12n +1;30n +2).
Ta có: (12n +1) chia hết cho d và (30n + 2) chia hết cho d =>
5(12n +1) chia hết cho d và 2(30n + 2) chia hết cho d
[5(12n +1) – 2(30n +2)] chia hết cho d => 1 chia hết cho d => d = ± 1
=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n N*)
\(A=\frac{12n+1}{30n+2}\)
Gọi d là ƯC ( 12n+1 ; 30n+2 )
Ta có :
\(12n+1⋮d\); \(30n+2⋮d\)
\(\Rightarrow12n+1-30n+2⋮d\)
\(\Rightarrow5\left(12n+1\right)-2\left(30n+2\right)⋮d\)
\(\Rightarrow60n+5-50n+4⋮d\)
\(\Rightarrow1⋮d\)\(\Rightarrow d\in\pm1\)
Kết luận : Vậy A là phân số tối giản với moin số nguyên n
Gọi d là ước chung lớn nhất của 12n+1 và 30n+2
=>(12n+1)chia hết cho d
=>(30n+2) chia hết cho d
=>5(12n+1) - 2(30n+2) chia hết cho d
=>(60n+5) - (60n+4) chia hết cho d
=> 1 chia hết cho d
=> 1=d
Vậy \(\frac{12n+1}{30n+2}\)tối giản với mọi P/s