K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2015

Ta có: Gọi d là UC(n;n+1)
=> n+1 chia hết cho d, n chia hết cho d (1)
=> (n+1) - n = 1 (2)
Từ (1) và (2) => 1 chia hết cho d
=> d = + 1
Vậy phân số n/n+1 là phân số tối giản.

28 tháng 4 2018

Gọi A=n+1/n+2 (n thuộc N, n khác -2)

Gọi ƯC(n+1,n+2)=d(d thuộc N sao)

=> n chia hết cho d ;  n+1 chia hết cho d

=> [(n+2)-(n+1)] chia hết cho d

=> (n+2-n-1) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

=> ƯC(n+1;n+2)=1

=> A là ps tối giản

gọi d thuộc ước chung lớn nhất của n+1 và 2n+1(d thuộc N*)

suy ra n+1 chia hết cho d

2n+1 chia hết cho d 

nên 2.(n+1) chia hết cho d

2n+1 chia hết cho d

2n+2 chia hết chod 

2n+1 chia hết cho d

(2n+2)-(2n+1) chia hết cho d

nên 1 chia hết cho d

vậy d=1 

c/m p/số n+1/2n+1 với n thuộc N* là phân số tối giản 

 

 

19 tháng 2 2019

gọi d là ƯC(n; n + 1) 

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\)

=> n + 1 - n  ⋮ d

=> 1 ⋮ d

=> d = 1

=> n/n+1 là phân số tối giản với mọi n thuộc N

19 tháng 2 2019

\(\text{Gọi ƯCLN( n , n + 1 ) = d}\)

\(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow\left(n+1\right)-\left(n\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\text{ Phân số }\frac{n}{n+1}\text{ là phân số tối giản}\)

8 tháng 5 2022

Gọi \(d=ƯC\left(n;n+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}n⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Rightarrow n+1-n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow\) phân số \(\dfrac{n}{n+1}\) là phân số tối giản

20 tháng 2 2016

Gọi d là ƯCLN ( n + 1 ; 2n + 3 )

=> n + 1 ⋮ d => 2.( n + 1 ) ⋮ d => 2n + 2 ⋮ d ( 1 )

=> 2n + 3 ⋮ d => 1.( 2n + 3 ) ⋮ d => 2n + 3 ⋮ d ( 2 )

Từ ( 1 ) và ( 2 ) => [ ( 2n + 3 ) - ( 2n + 2 ) ] ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 

20 tháng 2 2016

Đang làm dở làm tiếp : 

Vì ƯCLN ( n+1;2n+3 ) = 1 nên n+1/2n+3 tối giản

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

3 tháng 3 2016

Bạn nhân lên rồi tính ra ƯCLN của chúng bằng 1

11 tháng 5 2018

đặt \(ƯCLN_{\left(21n+1;18n+1\right)}=d\)

\(\Rightarrow\hept{\begin{cases}21n+1⋮d\\18n+1⋮d\end{cases}}\)

\(\Rightarrow\left(21n+1\right)-\left(18n+1\right)⋮d\)

\(\Leftrightarrow3n⋮d\)\(\Rightarrow21n⋮d\)

mà \(21n+1⋮d\)

\(\Rightarrow21n+1-21n⋮d\)\(\Leftrightarrow1⋮d\)

\(\Rightarrow d=1\)

do đó phân số 21n+1/18n+1  tối giản với mọi số tự nhiên n

11 tháng 5 2018

goi d la ƯCLN(21N+1;18N+1)

TA CÓ 18N+1 CHIA HẾT CHO d

           21N+1 CHIA HẾT CHO d

=> 126N+7 CHIA HẾT CHO d

     126N+6 CHIA HẾT CHO d

=>126N+7-126N-6 CHIA HẾT CHO d 

=>1 CHIA HẾT CHO d

=>d=1

VẬY ƯCLN CỦA TỬ VÀ MẪU LÀ 1 =>PHÂN SỐ TỐI GIẢN VỚI MỌI N THUỘC N