Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$
$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$
$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$
$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$
b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$
$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$
$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$
Lời giải:
\(A=\frac{1}{2}+\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}\)
Ta có:
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}< \frac{1}{30}+\frac{1}{30}+\frac{1}{30}=\frac{3}{30}=\frac{1}{10}\)
\(\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}+\frac{1}{50}=\frac{5}{50}=\frac{1}{10}\)
Cộng theo vế:
\(\frac{1}{33}+\frac{1}{34}+\frac{1}{35}+\frac{1}{51}+\frac{1}{53}+\frac{1}{55}+\frac{1}{57}+\frac{1}{59}< \frac{2}{10}=\frac{1}{5}\)
Suy ra \(A< \frac{1}{2}+\frac{1}{5}=\frac{7}{10}\)
Ta có đpcm.
Nếu:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)
\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)
\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-2\cdot\dfrac{1}{2}-2\cdot\dfrac{1}{4}-...-2\cdot\dfrac{1}{100}\)
\(A=\left(\dfrac{1}{1}+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\dfrac{1}{1}-\dfrac{1}{2}-...-\dfrac{1}{50}\)
\(A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)
\(\Rightarrow A=B\)
tớ giải chi tiết hơn nhá:
A=\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
A=(\(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
A=\(\left(\dfrac{1}{1}+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)\)
A=\(\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}=B\)
Vậy A=B
\(\left(1+\dfrac{1}{3}+\dfrac{1}{5}+.....+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{99}+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+.....+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+.......+\dfrac{1}{100}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{50}\right)\)
\(=\dfrac{1}{51}+\dfrac{1}{52}+......+\dfrac{1}{100}\)
Ta thấy:
\(\dfrac{1}{51}< \dfrac{1}{50}\)
\(\dfrac{1}{52}< \dfrac{1}{50}\)
...
\(\dfrac{1}{100}< \dfrac{1}{50}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< \dfrac{1}{50}.50=1\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\left(1\right)\)
Lại có:
\(\dfrac{1}{51}>\dfrac{1}{100}\)
\(\dfrac{1}{52}>\dfrac{1}{100}\)
...
\(\dfrac{1}{100}=\dfrac{1}{100}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{100}.50=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}>\dfrac{1}{2}\left(2\right)\)
Từ (1),(2)\(\Rightarrow\)\(\dfrac{1}{2}< \dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}< 1\)