Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Leftrightarrow x-3=\dfrac{1}{8}\)
\(\Leftrightarrow x=\dfrac{25}{8}\)
a,
\(\sqrt{\sqrt{3}+2\sqrt{\sqrt{3}-1}}+\sqrt{\sqrt{3}-2\sqrt{\sqrt{3}-1}}\\ =\sqrt{\sqrt{3}-1+2\sqrt{\sqrt{3}-1}+1}+\sqrt{\sqrt{3}-1-2\sqrt{\sqrt{3}-1}+1}\\ =\sqrt{\left(\sqrt{\sqrt{3}-1}+1\right)^2}+\sqrt{\left(1-\sqrt{\sqrt{3}-1}\right)^2}\\ =\sqrt{\sqrt{3}-1}+1+1-\sqrt{\sqrt{3}-1}\\ =2\)
b.
\(\sqrt{x-3-2\sqrt{x-4}}-\sqrt{x-4\sqrt{x-4}}\\ =\sqrt{x-4-2\sqrt{x-4}+1}-\sqrt{x-4-4\sqrt{x-4}+4}\\ =\sqrt{\left(\sqrt{x-4}-1\right)^2}-\sqrt{\left(\sqrt{x-4}-2\right)^2}\\ =\sqrt{x-4}-1-\sqrt{x-4}+2\\ =1\left(đpcm\right)\)\
A.\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) \(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)\left(n+1-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b. ap dungtinh B =\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)
a, \((\sqrt{3}-1)^2=4-2\sqrt{3}\)
VT=\((\sqrt{3}-1)^2\)
VT=\(3-2\sqrt{3}.1+1\)
VT=\(4-2\sqrt{3}\)
=> VT=VP
vậy .........
a) VT = \(\left(\sqrt{3}-1\right)^2\) = \(\left(\sqrt{3}\right)^2-2\sqrt{3}+1^2\) = \(3-2\sqrt{3}+1=4-2\sqrt{3}\) = VP
vậy \(\left(\sqrt{3}-1\right)^2=4-2\sqrt{3}\) (đpcm)
b) VT = \(\sqrt{4-2\sqrt{3}}-\sqrt{3}\) = \(\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{3}.1+1^2}-\sqrt{3}\)
= \(\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\) = \(\left|\sqrt{3}-1\right|-\sqrt{3}\) = \(\sqrt{3}-1-\sqrt{3}=-1\) = VP
vậy \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=-1\)(đpcm)