K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

a) \(9+4\sqrt{5}=4+4\sqrt{5}+5=2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2=\left(\sqrt{5}+2\right)^2\left(ĐPCM\right)\)

21 tháng 9 2017

a) \(9+4\sqrt{5}=\left(\sqrt{5}\right)^2+2.\sqrt{5}.2+2^2=\left(\sqrt{5}+2\right)^2\left(đpcm\right)\)

b)\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\left(đpcm\right)\)

c)\(\left(4-\sqrt{7}\right)^2=16-8\sqrt{7}+7=23-8\sqrt{7}\left(đpcm\right)\)

d)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=\sqrt{\left(4+\sqrt{7}\right)^2}-\sqrt{7}=4+\sqrt{7}-\sqrt{7}=4\left(đpcm\right)\)

29 tháng 8 2016

a) \(\left(\sqrt{5}+2\right)^2=\sqrt{5}^2+4\sqrt{5}+4=5+4\sqrt{5}+4=9+4\sqrt{5}\left(dpcm\right)\)

29 tháng 8 2016

cậu ơi làm câu 2 lun đi 

11 tháng 9 2019

undefined

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

a)

\((2\sqrt{5}-\sqrt{7})(2\sqrt{5}+\sqrt{7})=(2\sqrt{5})^2-(\sqrt{7})^2=13\)

b)

\((\sqrt{5-2\sqrt{6}}+\sqrt{2})\sqrt{3}=(\sqrt{2+3-2\sqrt{2.3}}+\sqrt{2})\sqrt{3}\)

\(=(\sqrt{(\sqrt{3}-\sqrt{2})^2}+\sqrt{2})\sqrt{3}=(\sqrt{3}-\sqrt{2}+\sqrt{2})\sqrt{3}=\sqrt{3}.\sqrt{3}=3\)

c)

\(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}=\sqrt{2^2+3-2.2\sqrt{3}}+\sqrt{2^2+3+2.2\sqrt{3}}\)

\(=\sqrt{(2-\sqrt{3})^2}+\sqrt{(2+\sqrt{3})^2}=2-\sqrt{3}+2+\sqrt{3}=4\)

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

d)

\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}=\sqrt{3^2+6-2.3\sqrt{6}}+\sqrt{9+24-2\sqrt{9.24}}\)

\(=\sqrt{(3-\sqrt{6})^2}+\sqrt{(\sqrt{24}-3)^2}=3-\sqrt{6}+\sqrt{24}-3\)

\(=\sqrt{6}\)

e)

\(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}=\sqrt{\frac{6+2\sqrt{5}}{2}}+\sqrt{\frac{6-2\sqrt{5}}{2}}\)

\(=\sqrt{\frac{5+1+2\sqrt{5.1}}{2}}+\sqrt{\frac{5+1-2\sqrt{5.1}}{2}}=\sqrt{\frac{(\sqrt{5}+1)^2}{2}}+\sqrt{\frac{(\sqrt{5}-1)^2}{2}}\)

\(=\frac{\sqrt{5}+1}{\sqrt{2}}+\frac{\sqrt{5}-1}{\sqrt{2}}=\sqrt{10}\)

g)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\sqrt{3+5-2\sqrt{3.5}}-\sqrt{20+3-2\sqrt{20.3}}\)

\(=\sqrt{(\sqrt{5}-\sqrt{3})^2}-\sqrt{(\sqrt{20}-\sqrt{3})^2}\)

\(=\sqrt{5}-\sqrt{3}-(\sqrt{20}-\sqrt{3})=\sqrt{5}-\sqrt{20}=-\sqrt{5}\)

23 tháng 6 2016

a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}=\left|\sqrt{5}-2\right|-\sqrt{5}=\sqrt{5}-2-\sqrt{5}=-2\)

b) \(\left(4-\sqrt{7}\right)^2=4^2-2.4.\sqrt{7}+\sqrt{7}^2=16-8\sqrt{7}+7=23-8\sqrt{7}\)

c)  \(\sqrt{23+8\sqrt{7}}=\sqrt{\left(4+\sqrt{7}\right)^2}=\left|4+\sqrt{7}\right|=\sqrt{7}+4\)

NV
16 tháng 9 2019

a/ \(=\left(7+4\sqrt{3}+3\left(7-4\sqrt{3}\right)\right)\left(7+2\sqrt{3}\right)\)

\(=\left(28-8\sqrt{3}\right)\left(7+2\sqrt{3}\right)\)

\(=4\left(7-2\sqrt{3}\right)\left(7+2\sqrt{3}\right)\)

\(=4\left(49-12\right)=...\)

b/ \(=\left(\frac{\sqrt{15}\left(\sqrt{3}-1\right)}{3\left(\sqrt{3}-1\right)}+\frac{2\sqrt{15}}{3}\right).4\sqrt{15}\)

\(=\left(\frac{\sqrt{15}}{3}+\frac{2\sqrt{15}}{3}\right).4\sqrt{15}\)

\(=\sqrt{15}.4\sqrt{15}=4.15=...\)

c/ Bạn coi lại đề

d/ \(\sqrt{23-2\sqrt{112}}+\sqrt{23+2\sqrt{112}}\)

\(=\sqrt{\left(4-\sqrt{7}\right)^2}+\sqrt{\left(4+\sqrt{7}\right)^2}\)

\(=4-\sqrt{7}+4+\sqrt{7}=8\)

28 tháng 5 2019

Bài 1 :

a)\(\sqrt{-2\text{x}+3}\) <=> -2x+3 \(\ge\)0 <=> -2x \(\ge\) -3 <=> x\(\le\) \(\frac{3}{2}\)

b)\(\sqrt{\frac{4}{x+3}}< =>x+3>0< =>x>-3\)

Bài 2 :

a)\(\sqrt{\left(4+\sqrt{2}\right)^2}=\left|4+\sqrt{2}\right|=4+\sqrt{2}\)

b)\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)

c) \(\sqrt{\left(3-\sqrt{3}\right)^2}=\left|3-\sqrt{3}\right|=3-\sqrt{3}\)

Bài 3 :

a) \(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)

VT = \(\sqrt{5-2.2.\sqrt{5}+2^2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{5}\right)^2-4\sqrt{5}+2^2}-\sqrt{5}\)

=\(\sqrt{\left(\sqrt{5}-2\right)^2}-\sqrt{5}\)

=|\(\sqrt{5-2}\)| -\(\sqrt{5}\)

= \(\sqrt{5}-2-\sqrt{5}\)

= -2 = VP

b)\(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)

VT = \(\sqrt{7+2.4.\sqrt{7}+4^2}-\sqrt{7}\)

= \(\sqrt{\left(\sqrt{7}+4\right)^2}-\sqrt{7}\)

= |\(\sqrt{7}+4\)| -\(\sqrt{7}\)

=\(\sqrt{7}+4-\sqrt{7}\)

= 4 =VP

c) \(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)

VT = \(16-8\sqrt{7}+7\)

= 23 - \(8\sqrt{7}\) = VP

Bài 4:

a)\(\frac{x^2-5}{x+\sqrt{5}}=\frac{x^2-\left(\sqrt{5}\right)^2}{x+\sqrt{5}}=\frac{\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)}{x+\sqrt{5}}=x-\sqrt{5}\)

Tương tự

Bài 5 :

a) \(\sqrt{x^2+6\text{x}+9}=3\text{x}-1\)

=> \(\sqrt{\left(x+3^2\right)}\) = 3x-1

=> x+3 = 3x-1

+) x+3 =3x-1 => x= 2

+)x+3=-3x-1 => x= \(\frac{-1}{2}\) ( không tmđk)

b)+c) Tương tự

3 tháng 9 2019

a) \(\sqrt{3^2}-\sqrt{7^2}+\sqrt{\left(-1\right)^2}=|3|-|7|+|-1|=3-7+1=-3\)

b) \(-2\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}+\sqrt{3^2}=-2|2|+|-5|+\left|3\right|=-4+5+3=4\)

c) \(\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2+\sqrt{2}\right)^2}=\left|2-\sqrt{2}\right|+\left|2+\sqrt{2}\right|=2-\sqrt{2}+2+\sqrt{2}=4\)

d) \(\sqrt{\left(3\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}=\left|3\sqrt{2}\right|-\left|1-\sqrt{2}\right|=3\sqrt{2}-\sqrt{2}+1=2\sqrt{2}+1\)

e) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}=\left|\sqrt{2}-1\right|+\left|\sqrt{2}+1\right|=\sqrt{2}-1+\sqrt{2}+1=2\sqrt{2}\)

f) \(\sqrt{9-4\sqrt{5}}+\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}+\sqrt{\left(\sqrt{5}+2\right)^2}=\left|\sqrt{5}-2\right|+\left|\sqrt{5}+2\right|=\sqrt{5}-2+\sqrt{5}+2=2\sqrt{5}\)

g) \(\sqrt{9-4\sqrt{2}}+\sqrt{11-6\sqrt{2}}=\sqrt{9-2\sqrt{8}}+\sqrt{2-2\sqrt{2}.3+9}=\sqrt{\left(\sqrt{8}-1\right)^2}+\sqrt{\left(\sqrt{2}-3\right)^2}=\sqrt{8}-1+3-\sqrt{2}=2-\sqrt{2}+\sqrt{8}\)

h) \(\sqrt{12+8\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{12+2\sqrt{4}\sqrt{8}}+\sqrt{6-2\sqrt{2}\sqrt{4}}=\sqrt{\left(\sqrt{4}+\sqrt{8}\right)^2}+\sqrt{\left(\sqrt{4}-\sqrt{2}\right)^2}=\sqrt{4}+\sqrt{8}+\sqrt{4}-\sqrt{2}\)

k) \(\left(2-\sqrt{3}\right)\sqrt{7+4\sqrt{3}}=\left(2-\sqrt{3}\right)\sqrt{\left(\sqrt{3}+2\right)^2}=\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)=4-3=1\)

17 tháng 12 2016

a, \(\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=\left(-\sqrt{2}+\sqrt{10}\right):\sqrt{2}-\sqrt{5}=-1\)

b.\(\sqrt{16+2\sqrt{16.5}+5}+\sqrt{16-2\sqrt{16.5}+5}=\sqrt{\left(4+\sqrt{5}\right)^2}+\sqrt{\left(4-\sqrt{5}\right)^2}=8\)

d,dat \(A=\sqrt{4+\sqrt{7}}+\sqrt{4-\sqrt{7}}\Rightarrow A^2=4+\sqrt{7}+2\sqrt{16-7}+4-\sqrt{7}\)\(A^2=8+6=14\Rightarrow A=\sqrt{14}\)

C,\(\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}=\sqrt{17-4\left(2+\sqrt{5}\right)}=\sqrt{17-8-4\sqrt{5}}=\sqrt{9-4\sqrt{5}}=\sqrt{5}-2\)