K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

Đặt \(m=\sqrt[3]{x^2}\)và \(n=\sqrt[3]{y^2}\)

=> m3 = x2 và n= y2

Ta có :\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{x^2y^4}}=a\)

=> \(\sqrt{m^3+\sqrt[3]{m^6n^3}}+\sqrt{n^3+\sqrt[3]{m^3n^6}}=a\)

=> \(\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\)

=> \(\sqrt{m^2\left(m+n\right)}+\sqrt{n^2\left(m+n\right)}=a\)

=> \(\sqrt{m+n}\left(m+n\right)=a\)

=> \(\left(\sqrt{m+n}\right)^3=\left(\sqrt[3]{a}\right)^3\)

=>\(\sqrt{m+n}=\sqrt[3]{a}\)

=> \(m+n=\left(\sqrt[3]{a}\right)^2\)

=> \(\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)

7 tháng 9 2016

Tính giải mà lười quá. Bạn cứ nhân vô là ra ah

6 tháng 1 2018

Thay x = y = 1 thì sẽ thấy nhé

23 tháng 7 2017

\(a=\sqrt{\sqrt[3]{x^6}+\sqrt[3]{x^4y^2}}+\sqrt{\sqrt[3]{y^6}+\sqrt[3]{y^4x^2}}\)

\(=\sqrt{\sqrt[3]{x^4}\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)}+\sqrt{\sqrt[3]{y^4}\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)}\)

\(=\sqrt{\sqrt[3]{x^2}+\sqrt[3]{y^2}}\left(\sqrt[3]{x^2}+\sqrt[3]{y^2}\right)\)\(\Rightarrow a=\left(\sqrt{\sqrt[3]{x^2}+\sqrt[3]{y^2}}\right)^3\)

\(\Rightarrow\sqrt[3]{a^2}=\sqrt[3]{x^2}+\sqrt[3]{y^2}\)

23 tháng 7 2018

không đúng vs đề mà bạn