K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2015

Vì n là số tự nhiên => n có dạng 2k ; 2k+1 

Ta có: 

Với n=2k 

=> (n+5).(n+10) = (2k+5).(2k+10)=(2k+5).2.(k+5) chia hết cho 2 

Với n=2k+1 

=> (n+5).(n+10)=(2k+1+5).(2k+1+10)=(2k+6).(2k+11)=2.(k+3).(2k+11) chia hết cho 2 

=> Với mọi số tự nhiên n thì (n+5).(n+10) luôn chia hết cho 2 

28 tháng 10 2016

11.....1-10m=1111...11-n-9n =(111..1-n)-9n

111..1-n luôn luôn chia hết cho 9

=> 11...1-n-10n chia hết cho 9

3 tháng 4 2016

ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)

=(133-12).(11mu n)+12.(144 mu n)

=133.(11 mu n)+(144mu n -11 mu n).12

ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)

=>(144 mu n)-(11 mu n)chia het cho 133

=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133

5 tháng 10 2015

ta có n^2+n+6

       =n^2+2.n.1/2+(1/2)^2+6-(1/2)^2

        =(n+1/2)^2+23/4

ta có (n+1/2)^2 không chia hết cho 5(1)

          23/4 không chia hết cho 5(2)

từ (1),(2) suy ra(n+1/2)^2+23/4 không chia hết cho 5

30 tháng 7 2017

1. Ta có dãy chia hết cho 2 : 2,4,6,...,100

Có số ' số chia hết cho 2 là :

(100-2):2+1=50 số

Ta có dãy chia hết cho 5 : 5,10,15,...,100

Có số ' số chia hết cho 5 là :

(100-5):5+1=20 số

2.

- n là số lẻ nên suy ra n+7 là chẵn

=> (n+4)(n+7) là số chẵn

- n là số chẵn suy ra n+4 là chẵn

=> (n+4)(n+7) là số chẵn

Vậy (n+4)(n+7) là số chẵn mà số chia hết cho 2 chỉ có số chẵn .

=> đpcm

Ta thấy n + n2 = n x ( n + 1 ) . Tích của 2 só tự nhiên liên tiếp chỉ tận cùng = 0 , 2 , 6 do đó n2 + n + 6 chỉ tận cùng = 6 , 8 ,2 

ko chia hết cho 5

Mik viết lại nha :

  \(2n+n+6\)

\(=2n-2n+3n+6\)

\(=3n+6\)

\(=3\left(n+6\right)\)

=> \(2n+n+6\)chia hết cho 3 chứ ko chia hết cho 5 ( đpcm )

24 tháng 10 2017

Xét 2 trường hợp:

* Nếu n là số lẻ thì:

n + 3 là số chẵn

n + 6 là số lẻ

suy ra (n+3)(n+6) là số chẵn và chia hết cho 2

* Nếu n là số chẵn thì:

n + 3 là số lẻ

n + 6 là số chẵn

suy ra (n+3)(n+6) là số chẵn và chia hết cho 2

Vậy với mọi ...........

Nhớ k cho mình nhé! Thank you!!!