K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 1 2018

Xét : 24^1993 + 14^1993

= (24^1993-5^1993)+(5^1993+14^1993)

Áp dụng tính chất a^n-b^n chia hết cho a,b với n,a,b thuộc N và a^2+b^n chia hết cho a+b với a,b lẻ thì:

24^1993-5^1993 chia hết cho 24-5=19

5^1993+14^1993 chia hết cho 5+14=19

=> 24^1993 + 14^1993 chia hết cho 19

Tk mk nha

Ta có: \(24^{1993}+14^{1993}\)

\(=\left(24+14\right)\left(24^{1992}-24^{1991}.14+...+14^{1992}\right)\)

\(=28\left(24^{1992}-24^{1991}.14+...+14^{1992}\right)\)

\(=19.2.\left(24^{1992}-24^{1991}.14+...+14^{1992}\right)\)chia hết cho 19 

\(\Rightarrow dpcm\)

6 tháng 11 2019

Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo link trên nhé!

25 tháng 7 2017

1)

\(7.5^{2n}+12.6^n\)

\(=7.25^n+12.25^n-12.25^n+12.6^n\)

\(=19.25^n-12.\left(25^n-6^n\right)\)

Ta có: 19.25n \(⋮\) 19

Vì 25n - 6n \(⋮\) 25 - 6

=> 25n - 6n \(⋮\) 19

Do đó : \(19.25^n-12.\left(25^n-6^n\right)\) \(⋮\) 19

=> \(7.5^{2n}+12.6^n\) \(⋮\) 19

2)

\(11^{n+2}+12^{2n+1}\)

\(=11^n.121+144^n.12\)

\(=11^n.133-11^n.12+144^n.12\)

\(=11^n.133+12.\left(144^n-11^n\right)\)

Ta có: 11n .133 \(⋮\) 133

Vì 144n - 11n \(⋮\) 144 - 11

=> 144n - 11n \(⋮\) 133

Do đó : \(11^n.133+12.\left(144^n-11^n\right)\) \(⋮\) 133

=> \(11^{n+2}+12^{2n+1}\) \(⋮\) 133

5 tháng 3 2018

Vì 25 đồng dư với 6 (mod19) nên 25n đồng dư với 6n (mod19)

Suy ra: 7.52n+12.6n=7.25n+12.6n đồng dư với 7.6n+12.6n (mod19)

Mà 7.6n+12.6n=19.6n đồng dư với 0 (mod19)

Suy ra: 7.52n+12.6n đồng dư với 0 (mod19) 

=> đpcm

1 tháng 9 2019

Sai đề r nếu a=2 và n=1 thì an+5-an+4=26-25=32 ko chia hết cho 30

8 tháng 10 2017

B1: Giải:

\(n^4+6n^3+11n^2+6n\)

= \(n^4+n^3+5n^3+5n^2+6n^2+6n\)

= \(n^3\left(n+1\right)+5n^2\left(n+1\right)+6n\left(n+1\right)\)

= \(\left(n+1\right)\left(n^3+5n^2+6n\right)\)

= \(\left(n+1\right)\left(n^3+2n^2+3n^2+6n\right)\)

= \(\left(n+1\right)\left[n^2\left(n+2\right)+3n\left(n+2\right)\right]\)

= \(\left(n+1\right)\left(n+2\right)\left(n^2+3n\right)\)

= \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

Vì n là số tự nhiên nên n , n+1 , n+2 , n+3 là 4 số tự nhiên liên tiếp.

Trong 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp, một số sẽ chia hết cho 4, số còn lại tất nhiên chia hết cho 2, do đó tích 4 số tự nhiên liên tiếp sẽ chia hết cho 8. (1)

Trong 4 số tự nhiên liên tiếp chắc chắn có 1 số chia hết cho 3, do đó tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3. (2)

Từ (1) và (2) suy ra tích của 4 số tự nhiên liên tiếp sẽ chia hết cho 3 và 8.

Mà 3 và 8 là 2 số nguyên tố cùng nhau nên tích của 4 số tự nhiên liên tiếp chia hết cho 24 ( = 8.3 )

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\)

Hay \(n^4+6n^3+11n^2+6n⋮24\left(n\in N\right)\)

24 tháng 9 2020

               Bài làm :

\(a\text{)}\left(n^3-n\right)=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)=\left(n-1\right)n\left(n+1\right)\)

Vì tích ba số tự nhiên liên tiếp ⋮ 6 nên : n3 - n ⋮ 6

=> Điều phải chứng minh

\(b\text{)}n^5-m=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left[\left(n^2-4\right)+5\right]=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+1\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)

Vì :

  • n(n-1)(n+1)(n-2)(n+2) là tích 5 số liên tiếp nên n(n-1)(n+1)(n-2)(n+2) ⋮ 5
  • 5n(n-1)(n+1) ⋮ 5

=> (n5-n) ⋮5

=> Điều phải chứng minh

 \(\text{c)}n^5-5n^3+4n=n\left(n^4-5n^2+4\right)=n\left(n^4-n^2-4n^2+4\right)=n\text{[}n^2\left(n^2-1\right)-4\left(n^2-1\right)\text{]}=n\left(n^2-1\right)\left(n^2-4\right)=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

\(\text{Vì : }n-2;n-1;n;n+1;n+2\text{là tích của 5 số nguyên liên tiếp nên chia hết cho 3,5,8}\)

Mà 3,5,8 nguyên tố cùng nhau nên :

\(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮3.5.8=120\) \(\)

=> Điều phải chứng minh

24 tháng 9 2020

a) n3 - n = n( n2 - 1 ) = n( n - 1 )( n + 1 )

Ta có n( n - 1 ) là hai số tự nhiên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là ba số tự nhiên liên tiếp => chia hết cho 3 (2)

Từ (1) và (2) => n( n - 1 )( n + 1 ) chia hết cho 6 hay n3 - n chia hết cho 6 ( đpcm ) 

b) n5 - n = n( n4 - 1 ) = n( n2 - 1 )( n2 + 1 ) = n( n - 1 )( n + 1 )( n2 + 1 )

= n( n - 1 )( n + 1 )[ ( n2 - 4 ) + 5 ]

= n( n - 1 )( n + 1 )( n2 - 4 ) + 5n( n - 1 )( n + 1 )

= n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) + 5n( n - 1 )( n + 1 )

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (1)

5n( n - 1 )( n + 1 ) chia hết cho 5 (2)

Từ (1) và (2) => đpcm

c) n5 - 5n3 + 4n = n( n4 - 5n2 + 4 )

Xét n4 - 5n2 + 4 (*)

Đặt t = n2 

(*) <=> t2 - 5t + 4 = t2 - t - 4t + 4 = t( t - 1 ) - 4( t - 1 ) = ( t - 1 )( t - 4 ) = ( n2 - 1 )( n2 - 4 )

=> n( n4 - 5n2 + 4 ) = n( n2 - 1 )( n2 - 4 ) = n( n - 1 )( n + 1 )( n - 2 )( n + 2 )

n( n - 1 ) là tích của hai số nguyên liên tiếp => chia hết cho 2 (1)

n( n - 1 )( n + 1 ) là tích của 3 số nguyên liên tiếp => chia hết cho 3 (2)

n( n - 1 )( n + 1 )( n - 2 ) là tích của 4 số nguyên liên tiếp => chia hết cho 4 (3)

n( n - 1 )( n + 1 )( n - 2 )( n + 2 ) là tích của 5 số nguyên liên tiếp => chia hết cho 5 (4)

Từ (1), (2), (3) và (4) => đpcm

17 tháng 8 2018

a) Dư 3

b) Dư 7

17 tháng 8 2018

trình bày cách làm dùm mk bn ơi!