K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2016

dat n=3k+1 hoac n=3q+2             (k,q tu nhien)

n=3k+1 suy ra n^2=(3k+1)^2=9k^2+6k+1 chia 3 du 1

n=3q+2 suy ra n^2=(3q+2)^2=9q^2+12q+3+1 chia 3 du 1

7 tháng 1 2016

Lạ ghê , lớp 5 đã học toán chứng minh rùi à ?

13 tháng 3 2017

= 287 nhe

13 tháng 3 2017

Số chia là 7 thì số dư lớn nhất là 6.

Số chia là: (2015 - 6) : 7 = 287

                                       Đ/s: 287 là số chia

9 tháng 12 2016

cả câu này nữa. sót nhiều thế

sao loằng ngoằng thế

10 tháng 12 2016

đề bài nó thế chứ biết sao

13 tháng 3 2017

252 đó bạn vì 2015 chia 252 = 7 dư 251

số chia đó là:

2015x7=1025

đáp số:1025

11 tháng 8 2016

 Ta biết một số chính phương có chữ số hàng đơn vị là 6 thì chữ số hàng chục của nó là số lẻ. Vì vậy chữ số hàng chục của 5 số chính phương đã cho là 1,3,5,7,9 khi đó tổng của chúng bằng 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chính phương 

11 tháng 8 2016

 Nếu một số chính phương M = a2 có chữ số hàng đơn vị là 6 thì chữ số tận cùng của a là 4 hoặc 6  a2  a 2  4 Theo dấu hiệu chia hết cho 4 thì hai chữ số tận cùng của M chỉ có thể là 16, 36, 56, 76, 96  Ta có: 1 + 3 + 5 + 7 + 9 = 25 = 52 là số chính phương

12 tháng 1 2020

A) có thể dư 1,3,5

b) chia 6 dư 2

c)  chia 6 có thể dư 1

d) chia 6 có thể dư 4

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k. 

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ. 
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2. 
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) 

Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.

29 tháng 5 2017

Tham khảo nè bác :)

Câu hỏi của Đỗ Văn Hoài Tuân - Toán lớp 7 - Học toán với OnlineMath

Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k. 

Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ. 

Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2 => p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2. 

Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn) Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ

(đ.p.c.m)