Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(abcdeg=1000abc+deg\)
\(=1001abc-abc+deg\)
\(=1001abc-\left(abc-deg\right)\)
\(=abc\cdot13\cdot77-\left(abc-deg\right)\)
Vì abc . 13 . 77 chia hết cho 13 ; abc - deg chia hết cho 13
=> abcdeg chia hết cho 13 ( đpcm )
b) Ta có : \(abc\) chia hết cho 29\(=>\left(1000a+100b+10c+d\right)\) chia hết cho 29
\(=>2000a+200b+20c+2d\) chia hết cho 29
\(=>\left(2001a+203b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>\left(29\cdot69a+29\cdot7b+29c+29d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>29\cdot\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
Vì \(29\cdot\left(69a+7b+c+d\right)\) chia hết cho 29 và \(29.\left(69a+7b+c+d\right)-\left(a+3b+9c+27d\right)\) chia hết cho 29
\(=>a+3b+9c+27d\) chia hết cho 29
+ Ta có
n=abcd=1000a+100b+10c+d=986a+87b+14a+13b+10c+d=29(34a+3b)+(14a+13b+10c+d) chia hết cho 29
Mà 29(34a+3b) chia hết cho 29 nên (14a+13b+10c+d) cũng chia hết cho 29
+ Ta lại có
a+3b+9c+27d=29(a+b+c+d)-(28a+26b+20c+2d)=29(a+b+c+d)-2(14a+13b+10c+d)
Mà 29(a+b+c+d) chia hết cho 29 và (14a+13b+10c+d) cũng chia hết cho 29 nên 2(14a+13b+10c+d) chia hết cho 29
=> a+3b+9c+27d chia hết cho 29
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
\(17x+17y⋮17\)\(\Leftrightarrow8x+12y+9x+5y⋮17\)\(\Rightarrow4\left(2x+3y\right)+9x+5y⋮17\)
Vì 2x+3y chia hết cho 17 => 9x+5y chia hết cho 17
Vậy với mọi x, y\(\in N\) và 2x+3y chia hết cho 17 thì 9x+5y chia hết cho 17