Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rút gọn thừa số chung
( 4 - x ) y + 3x = 15
đơn giản biểu thức
( 4 - x ) y + 3x - 15 = 0
giải phương trình
- ( ( x - 4 ) y -3x + 15 ) = 0
giải phương trình
( x - 4 ) y - 3x + 15 = 0
rút gọn thừa số chung
x - 4 = 0
đơn giản biểu thức
x = 4
rút gọn thừa số chung
y - 3 = 0
đơn giản biểu thức
y = 3
3x+4y+xy=1
ó x(3-y) + 4y = 1
ó x(3-y) -12 + 4y = 1 - 12
ó x(3-y) - 4(3-y) = -13
ó (x - 4 )( 3 - y ) = -13
Ta có bảng:
x-4 | 1 | 13 | -1 | -13 |
3-y | 13 | 1 | -13 | -1 |
x | 5 | 17 | -3 | -9 |
y | -10 | 2 | 16 | 4 |
Vậy bn tự kết luận gt x,y
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
Ta có: | a | = a nếu a ≥ 0 và -a nếu a < 0, do đó |a| + a = 2a nếu a ≥ 0 và =0 nếu a < 0
Do vậy, nếu a ∈ Z, thì | a | + a là số chẵn
Áp dụng điều này, với x, y, z ∈ Z thì:
| x – 2y | + x – 2y + | 4y – 5z | + 4y – 5z + | z – 3x | + z – 3x là số chẵn
⇒ (| x – 2y | + | 4y – 5z | + | z – 3x |) + (-2x + 2y – 4z) là số chẵn
⇒ | x – 2y | + | 4y – 5z | + | z – 3x | là số chẵn
Mà 2011 là số lẻ. Vậy không tồn tại các số nguyên x, y, z sao cho:
| x – 2y | + | 4y – 5z | + | z – 3x | = 2011
\(\text{Ta có:}\)
\(|a|\text{ cùng tính chẵn lẻ với a khi a là số nguyên}\)
\(\text{Mà: 3x-4y; 5x-6y đều là số nguyên nên:}|3x-4y|+|5x-6y|\text{ cùng tính chẵn lẻ với:}\)
\(\text{3x-4y+5x-6y=8x-10y chia hết cho 2 nên là số chẵn mà 7 là số lẻ nên vô lí ta có điều phải chứng minh}\)