Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\)
\(VP^2=\frac{a+\sqrt{a^2-b}}{2}+\frac{a-\sqrt{a^2-b}}{2}+2\sqrt{\frac{\left(a+\sqrt{a^2-b}\right)\left(a-\sqrt{a^2-b}\right)}{2.2}}\)
\(=a+\sqrt{\left[a^2-\left(a^2-b\right)\right]}=a+\sqrt{b}\)
\(\Rightarrow VP=\sqrt{a+\sqrt{b}}=VT\)
Ta có:
\(\left(\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\right)^2=a+\sqrt{b}+a-\sqrt{b}+2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}\)
\(=2\left(a+\sqrt{a^2-b}\right)\)
\(\Rightarrow\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}=\sqrt{2\left(a+\sqrt{a^2-b}\right)}\)
Tương tự, ta cũng được \(\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}=\sqrt{2\left(a-\sqrt{a^2-b}\right)}\)
a)
\(\left(\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}\right)^2\)
\(=a+\sqrt{b}\ne2\sqrt{\left(a+\sqrt{b}\right)\left(a-\sqrt{b}\right)}+a-\sqrt{b}\)
\(=2a\ne2\sqrt{a^2-b}=2\left(a\ne\sqrt{a^2}-b\right)\)
\(\Rightarrow\sqrt{a+\sqrt{b}}\ne\sqrt{a-\sqrt{b}}=\sqrt{2\left(a\ne\sqrt{a^2}-b\right)}\)
\(\Rightarrowđpcm\)
b)
\(\left(\sqrt{\frac{a+\sqrt{a^2-b}}{2}\ne}\sqrt{\frac{a-\sqrt{a^2-b}}{2}}\right)^2\)
\(=\frac{a+\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a+\sqrt{a^2-b}}{2}.\frac{a-\sqrt{a^2-b}}{2}}+\frac{a-\sqrt{a^2-b}}{2}\)
\(=\frac{a}{2}+\frac{\sqrt{a^2-b}}{2}\ne\sqrt[2]{\frac{a^2-a^2+b}{2.2}}+\frac{a}{2}-\frac{\sqrt{a^2-b}}{2}\)
\(=a\ne2\frac{\sqrt{b}}{2}=a\ne\sqrt{b}\)
\(\Rightarrow\sqrt{\frac{a+\sqrt{a^2-b}}{2}}\ne\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\sqrt{a\ne\sqrt{b}}\)
\(\Rightarrowđpcm\)
Bài 1 :
a) \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\frac{1}{\sqrt{x}-1}\right).\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\frac{1+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}-1}{\sqrt{x}}\)
\(P=\frac{\sqrt{x}+1}{x}\)
b) \(P>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}>\frac{1}{2}\)
\(\Leftrightarrow\frac{\sqrt{x}+1}{x}-\frac{1}{2}>0\)
\(\Leftrightarrow\frac{\sqrt{x}+1-2x}{x}>0\)
\(\Leftrightarrow\sqrt{x}-2x+1>0\left(x>0\right)\)
\(\Leftrightarrow\sqrt{x}+x^2-2x+1-x^2>0\)
\(\Leftrightarrow\sqrt{x}+x^2+\left(x-1\right)^2>0\left(\forall x>0\right)\)
Vậy P > 1/2 với mọi x> 0 ; x khác 1
Bài 2 :
a) \(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+a}+\frac{2}{a-1}\right)\)
\(K=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}\left(\sqrt{a}+1\right)}+\frac{2}{a-1}\right)\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1+2\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}\left(a-1\right)\left(\sqrt{a}+1\right)}\)
\(K=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\sqrt{a}\left(a-1\right)\left(\sqrt{a}-1\right)}{a-1+2a+2\sqrt{a}}\)
\(K=\frac{\left(a-1\right)^2}{3a+2\sqrt{a}-1}\)
b) \(a=3+2\sqrt{2}=2+2\sqrt{2}+1=\left(\sqrt{2}+1\right)^2\)( thỏa mãn ĐKXĐ )
Thay a vào biểu thức K , ta có :
\(K=\frac{\left(3+2\sqrt{2}-1\right)^2}{3\left(3+2\sqrt{2}\right)+2\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{9+6\sqrt{2}+2\left|\sqrt{2}+1\right|-1}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{8+6\sqrt{2}+2\sqrt{2}+2}\)
\(K=\frac{\left(2+2\sqrt{2}\right)^2}{10+8\sqrt{2}}\)
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
a/
\(=\frac{a+b}{b^2}.\frac{\left|a\right|.b^2}{\left|a+b\right|}=\frac{\left(a+b\right).b^2.\left|a\right|}{b^2\left(a+b\right)}=\left|a\right|\)
b/
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}-\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)
\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\frac{2\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)