Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d thuộc Ư(6n+5,4n+3)
=>6n+5 chia hết cho d ; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
Gọi ƯCLN ( 2n+1, 6n+4) là d ( d thuộc N)
Ta có:
2n + 1 chia hết chia cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d (1)
6n+4 chia hết cho d (2)
Từ (1), (2) suy ra:
(6n+4) - (6n+3) chia hết cho d
1 chia hết cho d
=> d=1
=> ƯCLN(2n+1,6n+4) = 1
Vậy 2n+1 và 6n+4 là hai số nguyên tố cùng nhau
Giả sử rằng với n = k (k thuộc N) ta có 2k+1 và 6k+5 ko phải là 2 số nguyên tố cùng nhau, nghĩa là UCLN(2k+1;6k+5) = d (d > 1)
d là ước của 2k+1 và 6k+5 ---> d là ước của 6k+5 - 3.(2k+1) = 2 ---> d = 2 (vì d > 1)
Nhưng điều đó là vô lý vì 2 không thể là ước của 2k+1 và 6k+5 được
Do đó điều giả sử trên là sai ---> 2n+1 và 6n+5 là 2 số nguyên tố cùng nhau với mọi n thuộc N.
2n + 5 và 3n+ 7
=> Gợi UCLN của 2n+ 5 và 3n+ 7 là d
=> 2n+5 chia hết cho d
=> 3n+7 chai hết cho d
=> 3( 2n+5) chia hết cho d
=> 2( 3n+7) chia hết cho d
=> 6n + 15 chia hết cho d
=> 6n+ 14 chia hết cho d
=> 6n+ 15- 6n + 14 chia hết cho d
=> 1 chia hết cho d
=> d= 1
=> UCLN ( 2n+5) và 3n+7 là 1
=> đpcm
Tick nhé
Gọi UCLN(2n + 5; 3n + 7) là d
=> 2n + 5 chia hết cho d => 3(2n + 5) chia hết cho d
3n + 7 chia hết cho d => 2(3n + 7) chia hết cho d
=> 3(2n + 5) - 2(3n + 7) chia hết cho d
=> 6n + 15 - 6n - 14 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=>UCLN(2n + 5; 3n + 7) = 1
Vậy...
Bài 1 :
\(a,\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
Ta có : \(VT=\left(a-b\right)+\left(c-d\right)-\left(a-c\right)\)
\(=a-b+c-d-a+c\)
\(=-\left(b+d\right)=VP\)
\(\Rightarrow\left(a-b\right)+\left(c-d\right)-\left(a-c\right)=-\left(b+d\right)\)
\(b,\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
Ta có : \(VT=\left(a-b\right)-\left(c-d\right)+\left(b+c\right)\)
\(=a-b-c+d+b+c\)
\(=a+d=VP\)
\(\Rightarrow\left(a-b\right)-\left(c-d\right)+\left(b+c\right)=a+d\)
A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.
Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.
Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.
B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:
n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.
Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.
Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.
Gọi (2n + 1,6n + 5) = d (d \(\in\)N)
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 3 . (2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
hay 2 chia hết cho d => d \(\in\)Ư(2) => d \(\in\){-2;-1;1;2}
Mà d là lớn nhất nên d = 2
Ta thấy 6n + 5 ko chia hết cho 2 và 2n + 1 ko chia hết cho 2
=> (2n + 1,6n + 5) = 1
Vậy 2n + 1 và 6n + 5 là 2 số nguyên tố cùng nhau với mọi n thuộc N
Ủng hộ mk nha !!! ^_^
Gọi d là Ưcln của 2n + 1 và 6n + 5
Khi đó : 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
<=> 3.(2n + 1) chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> (6n + 5) - (6n + 3) chia hết cho d => 2 chia hết cho d
Mà ưc của 2 là 1 => d = 1
VậY (đpcm_)
a) Gọi ƯCLN của 2n + 1 và 6n + 5 là d.
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
=> 2 chia hết cho d.
Mà 2n + 1 là số lẻ không chia hết cho d => d = 1
=> 2n + 1 và 6n + 5 là một cặp số nguyên tố.
b) Gọi ƯCLN của 3n + 2 và 5n + 3 là d
=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d
=> 15n + 10 - (15n + 9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 3n + 2 và 5n + 3 là một cặp số nguyên tố (đpcm)
Câu a) thôi, câu b) chị chưa nghĩ được!
+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )
+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* )
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
<=> 2 chia hết cho d
=> d thuộc Ư ( 2 )
=> d thuộc {1; 2}
Nhưng d là số lẻ => d ≠ 2 => d = 1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
Gọi (2n+5,6n+11)=d(d\(\inℕ^∗\))
\(\Rightarrow\)2n+5\(⋮\)d
6n+11\(⋮\)d
\(\Rightarrow\)12n+30\(⋮\)d
12n+22\(⋮\)d
\(\Rightarrow\)(12n+30-12n-22)\(⋮\)d
\(\Rightarrow\)8\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư(8)={1,2,4,8}
Mà ta thấy 2n+5 và 6n+11 là hai số lẻ nên ƯCLN(2n+5,6n+11)=lẻ
\(\Rightarrow\)d=lẻ=1
Vậy 2n+5 và 6n+11 nguyên tố cùng nhau (đfcm)
Gọi (2n + 5 , 6n + 11) = d (d thuộc N*)
=> 2n + 5 \(⋮\)d
6n + 11 \(⋮\)d
=> 3(2n + 5) \(⋮\)d
6n + 11 \(⋮\)d
=> 6n + 15 \(⋮\)d
6n + 11 \(⋮\)d
=> (6n + 15) - (6n + 11) \(⋮\)d
=> 6n + 15 - 6n - 11 \(⋮\)d
=> 15 - 11 \(⋮\)d
=> 4 \(⋮\)d
=> d \(\in\) Ư(4)
Mà ta thấy 2n + 5 và 6n + 11 là số lẻ
Vậy d \(\in\) Ư(4) là số lẻ
Mà Ư(4) là số lẻ là {1} => d = 1
Vậy (2n + 5 , 6n + 11) = 1 hay 2n + 5 và 6n + 11 là 2 số nguyên tố cùng nhau