K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Hướng dẫn:

Ta có: Hai cung tròn tâm M và N có bán kính bằng nhau

Nên MP = NP và MQ = NQ => P; Q cách đều hai mút M, N của đoạn thẳng MN nên P; Q thuộc đường trung trực của MN hay đường thẳng qua P, Q là đường trung trực của MN

19 tháng 4 2017

Hướng dẫn:

Ta có: Hai cung tròn tâm M và N có bán kính bằng nhau

Nên MP = NP và MQ = NQ => P; Q cách đều hai mút M, N của đoạn thẳng MN nên P; Q thuộc đường trung trực của MN hay đường thẳng qua P, Q là đường trung trực của MN

1 tháng 7 2019

Ta có : Hai cung tròn tâm M và N có bán kính bằng nhau và cắt nhau tại P, Q.

Nên MP = NP và MQ = NQ

⇒ P; Q cách đều hai mút M, N của đoạn thẳng MN

nên theo định lí 2 : P; Q thuộc đường trung trực của MN

hay đường thẳng qua P, Q là đường trung trực của MN.

Vậy PQ là đường trung trực của MN.

19 tháng 4 2017

Hướng dẫn:

+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B

+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.

+ Phần chứng minh tương tự như bài 34

19 tháng 4 2017

+ Trên cạnh thứ nhất lấy hai điểm phân biệt A; B trên cạnh thứ hai lấy hai điểm C; D sao cho khoảng cách từ C; D đến đỉnh của góc lần lượt bằng khoảng cách từ đỉnh của góc với A, B

+ Xác định giao điểm I của BC và AD; tia vẽ từ đỉnh của góc qua I chính là tia phân giác của góc đó.

+ Phần chứng minh tương tự như bài 34

19 tháng 4 2017

Hướng dẫn:

Từ hình vẽ ta có:

DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)

=> ˆADK=ˆCDKADK^=CDK^

hay DK là phân giác ˆADCADC^

=> ˆADKADK^ = 1212ˆADCADC^

∆ADI = ∆BDI (c.c.c)

=> ˆADI=ˆBDIADI^=BDI^

=> DI là phân giác ˆADBADB^

=> ˆADIADI^ = 1212 ˆADBADB^

Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC

=> DK ⊥ DI

hay ˆADKADK^ + ˆADIADI^ = 900

Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900

=> ˆADCADC^ + ˆADBADB^ = 1800

19 tháng 4 2017

Từ hình vẽ ta có:

DK là trung trực của Ac, DI là đường trung trực của AB. Do đó ∆ADK = ∆CDK (c.c.c)

=> ˆADK=ˆCDKADK^=CDK^

hay DK là phân giác ˆADCADC^

=> ˆADKADK^ = 1212ˆADCADC^

∆ADI = ∆BDI (c.c.c)

=> ˆADI=ˆBDIADI^=BDI^

=> DI là phân giác ˆADBADB^

=> ˆADIADI^ = 1212 ˆADBADB^

Vì AC // DI ( cùng vuông góc với AB) mà DK ⊥ AC

=> DK ⊥ DI

hay ˆADKADK^ + ˆADIADI^ = 900

Do đó 1212ˆADCADC^ + 1212 ˆADBADB^ = 900

=> ˆADCADC^ + ˆADBADB^ = 1800



19 tháng 4 2017

Hướng dẫn :

Theo cách vẽ thì M cách đều hai cạnh Ox, Oy (cùng bằng khoảng cách 2 lề của chiếc thước

Vì M cách đều Ox, Oy nên theo định lí đảo M thuộc phân giác của ˆxOyxOy^ hay OM là phân giác của ˆ

2 tháng 6 2017

Ta có: góc B + góc D = 1200 + 600 = 1800

Mà hai góc này TCP

=> AB // CD

Xét tam giác ABO và tam giác CDO có:

AB = CD (GT)

ABC = BCD (AB // CD)

BAD = ADC (AB // CD)

=> tam giác ABO = tam giác CDO

=> AO = OD

=> O là trung điểm AD

Ta có: tam giác ABO = tam giác CDO

=> BO = OC

=> O là trung điểm BC

19 tháng 12 2019

B D A E C K 1 2 3 4

Nối KA,KB,KC.

Ta có KD là đường trung trực AB

=>KA=KB(tính chất đường trung trực)

\(\Rightarrow\Delta KAB\) cân tại K nên KD là đường phân giác của \(\widehat{AKB}\)

\(\Rightarrow\widehat{K_1}=\widehat{K_3}\)

\(\Rightarrow\widehat{AKB}=2\widehat{K_1}\) (1)

KE là đường trung trực của AC

=>KA=KC(tính chất đường trung trực)

\(\Rightarrow\Delta KAC\) cân tại K nên KE là đường phân giác của \(\widehat{AKC}\)

\(\Rightarrow\widehat{K_2}=\widehat{K_4}\)

\(\Rightarrow\widehat{AKC}=2\widehat{K_2}\left(2\right)\)

\(KD\perp AB\left(gt\right)\)

\(AC\perp AB\left(gt\right)\)

a: Gọi N là giao điểm của BC với a

Nếu M khác N 

Vì M nằm trên đường trung trực của AC

nên MA=MC

XétΔMBC có BC<MB+MC

=>BC<MA+MB

Nếu M trùng với N thì nối NA

Vì N nằm trên đường trung trực của AC nên NA=NC

=>MA+MB=NA+NB=BC

=>MA+MB>=BC

b: MA+MB nhỏ nhất khi M là giao điểm của BC với a