">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2020

Giả sử phản chứng n ko chia hết cho 5 

=> n có dạng là 5a + 1; 5b + 2; 5c + 3; 5d + 4

TH1:   n = 5a + 1

=>   \(n^2=\left(5a+1\right)^2=25a^2+10a+1\)     ko chia hết cho 5

TH2:   n = 5b + 2

=>    \(n^2=\left(5b+2\right)^2=25b^2+20b+4\)    ko chia hết cho 5

TH3:   n = 5c + 3

=>   \(n^2=\left(5c+3\right)^2=25c^2+30c+9\)     ko chia hết cho 5

TH4:   n = 5d + 4

=>   \(n^2=\left(5d+4\right)^2=25d^2+40d+16\)  ko chia hết cho 5

VẬY QUA 4 TRƯỜNG HỢP THÌ TA THẤY ĐIỀU GIẢ SỬ LÀ SAI

=>    ĐIỀU PHẢI CHỨNG MINH:     \(n^2⋮5\Rightarrow n⋮5\)

23 tháng 8 2020

Giả sử n2 chia hết cho 5 và n không chia hết cho 5.

Nếu n=5k\(\pm\)\(\left(k\inℕ\right)\)thì \(n^2=25k^2\pm10k+1=5\left(5k^2\pm2k\right)+1⋮̸5\)

Nếu \(n=5k\pm2\left(k\inℕ\right)\)thì \(n^2=25k^2\pm20k+4=5\left(5k^2\pm4k\right)+4⋮̸5\)

Điều này mâu thuẫn với giả thiết n2 chia hết cho 5

20 tháng 11 2017

N lẻ nên  n có dạng : n = 2k+1 ( k thuộc N )

Khi đó n^2-1 = (2k+1)^2 - 1 = 4k^2+4k+1-1 = 4k^2+4k = 4k.(k+1)

Ta thấy : k ; k+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => k.(k+1) chia hết cho 2

=> n^2-1 = 4.k.(k+1) chia hết cho 8

=> ĐPCM

k mk nha

25 tháng 9 2016

minh chi moi lop 7 nen chua biet nheiu, nhung minh se lam theo cach cua minh.

Neu sai thi co the it nhat se cho ban dc mot vai goi y de lam bai 9 ( trong truong hop ban ko bik

dat  n=abc...

neu n^2 chia het cho 3->n^2 co so nguyen to 3=>n co so nguyrn to 3 -> n co so nguyen to 3      (1)

neu n khong chia het cho 3 =>n ko co so nguyen to 3->n^2 ko co so nguyen to 3->n^2 ko chia het cho 3(2)

Vay n^2 chia het cho 3 thi n chia het cho 3

minh thay van sai sot rat nhieu va qua nhieu chu, day co the lam goi y thoi

4 tháng 12 2017

mk mới hk lớp 6 ko biết giải có đúng ko

Giả sử n không chia hết cho 3 => n có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

+) Với n=3k+1 

=> n^2=(3k+1)^2=9.k^2+6k+1 không chia hết cho 3

+) Với n=3k+2

=> n^2=(3k+2)^2=9.k^2+12k+4 không chia hết cho 3

Vậy với n không chia hết cho 3 thì n^2 không chia hết cho 3

=> Với n^2 chia hết cho 3 thì n phải chia hết cho 3

6 tháng 10 2018

Giả sử a+b không chia hết cho 5

Suy ra:

\(\left(a+b\right)^5\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4\)không chia hết cho 5

\(\Leftrightarrow\left(a^5+b^5\right)+5\cdot A\)không chia hết cho 5

\(\Leftrightarrow a^5+b^5\)không chia hết cho 5

Phản giả thiết

Vậy ......

Nếu không sử dụng phản chứng ta có thể chứng minh bằng pp khai triển giả thiết

\(a^5+b^5=\left(a+b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^4\right)⋮5\)

Suy ra: \(\left(a+b\right)⋮5\)

Cũng có thể giải bằng quy nạp toán học

3 tháng 7 2018

Ta có : \(5^n⋮5,1995⋮5\)

nên \(5^n+1995⋮5\)(1)

Mặt khác : \(5^n+1995=\left(5^n-1\right)+1994\)

mà  \(5^n-1⋮4,1994⋮4\)

nên  \(\left(5^n-1\right)+1994⋮4\)

hay \(5^n+1995⋮4\)(2)

từ (1) và (2) \(\Rightarrow5^n+1995⋮20\)

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)

       

 

 

10 tháng 4 2018

a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2.

Điều này mâu thuẫn với giả thiết a + b < 2. Vậy một trong hai số a và b phải nhỏ hơn 1.

b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ. Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.

11 tháng 4 2018

a) Giả sử ngược lại rằng a ≥ 1 và b ≥ 1. Ta suy ra a + b ≥ 2. Điều này mâu thuẫn với giả thiết a + b < 2.

Vậy một trong hai số a và b phải nhỏ hơn 1.

b) Giả sử ngược lại rằng n là số tự nhiên chẵn, n = 2k (k ∈ N). Khi đó 5n + 4 = 10k + 4 = 2(5k + 2) là một số chẵn. Điều này mâu thuẫn với 5n + 4 là số lẻ.

Vậy nếu 5n + 4 là số lẻ thì n là số lẻ.