Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu này dễ mak
Ta có tam giác vuông có 3 cạnh b,c,a với h là đường cao ứng với cạnh huyền a, ta có
+) b^2 + c^2 = a^2 (Định lí Pi-ta-go)
+) ah = bc(Hệ thức lượng)
Ta có:
+) (b + c)^2 + h^2 = b^2 + 2bc + c^2 + h^2 = a^2 + 2ah + h^2
+) (a + h)^2 = a^2 + 2ah + h^2
Từ đây suy ra: (b + c)^2 + h^2 = (a + h)^2
=> Tam giác có 3 cạnh là b + c; a+ h và h là tam giác vuông (Định lí Py-ta-go đảo)
1)
gọi I là giao điểm của BD và CE
ta có E là trung điểm cua AB nên EB bằng 3 cm
xét △EBI có \(\widehat{I}\)=900 có
EB2 = EI2 + BI2 =32=9 (1)
tương tự IC2 + DI2 = 16 (2)
lấy (1) + (2) ta được
EI2+DI2+BI2+IC2=25
⇔ ED2+BC2=25
xét △ABC có E là trung điểm của AB và D là trung điểm của AC
⇒ ED là đường trung bình của tam giác
⇒ 2ED =BC
⇔ ED2=14BC2
⇒ 14BC2+BC2=25
⇔ 54BC2=25
⇔ BC2=20BC2=20
⇔ BC=√20
Ta có: \(S_{AHC}=\frac{AH.AC}{2}=96\left(cm^2\right)\Rightarrow AH.AC=192cm\)(1)
\(S_{ABH}=\frac{AH.BH}{2}=54\left(cm^2\right)\Rightarrow AH.BH=108cm\)(2)
Từ (1) và (2) \(\Rightarrow AH.BH.AH.HC=20736\)
Mà: AH2=BH.CH
=> AH2.AH2=BH.CH.AH2
<=> AH4=20736
=> AH=12cm
=> BH=9cm ; CH=16cm
Vậy BC=25cm
2 phần thôi chứ Đăng, "=" sao nổi ( 54 và 96 mà :D)
Gọi tam giác vuông đó là ABC vuông tại A, đường cao AH (H thuộc BC) có \(S_{ABH}=54cm^2;S_{ACH}=96cm^2\).
Thì tỷ số diện tích: \(\frac{S_{ABH}}{S_{ACH}}=\frac{\frac{1}{2}AH\cdot BH}{\frac{1}{2}AH\cdot CH}=\frac{BH}{CH}=\frac{54}{96}=\frac{9}{16}\Rightarrow\frac{BH}{9}=\frac{CH}{16}=p\)(đặt = p)
Mặt khác 2 tam giác vuông HAB và HCA đồng dạng (vì có 2 góc HAB = HCA - cùng phụ với góc HAC)
Nên ta có: \(\frac{HB}{HA}=\frac{HA}{HC}\Rightarrow HA^2=HB\cdot HC=AH^2\Rightarrow AH^2=9p\cdot16p=144p^2\Rightarrow AH=12p\)
Mặt khác \(S_{ABH}=54cm^2=\frac{1}{2}AH\cdot BH=\frac{1}{2}\cdot12p\cdot9p=54p^2\Rightarrow p=1\)
Vậy, BH = 9cm; CH = 16cm và BC = BH + CH = 9 + 16 = 25 cm.
Giả sử: tam giác ABC vuông tại A có đường cao AH, BH=1; CH=2
Ta có: \(AH^2=BH.CH\)
\(\Leftrightarrow AH=\sqrt{2}\)
Trong tam giác ABH vuông tại H ta có
\(AB^2=AH^2+BH^2=2+1=3\)
Trong tam giác AHC vuông tại H có
\(AC^2=AH^2+HC^2=2+4=6\)
Khi đó: \(AB^2+AC^2=9\)
Từ hệ thức số (3) ta có
\(bc=ah\Rightarrow b^2c^2=a^2h^2\Rightarrow b^2c^2=\left(b^2+c^2\right)h^2\Rightarrow\dfrac{1}{h^2}=\dfrac{b^2+c^2}{b^2c^2}\Rightarrow\dfrac{1}{h^2}=\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
làm ơn giúp mình với ạ , mình cần gấp lắm :((((((((