K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2017

với a > 0 và a khác 0. Ta có :

       \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}\left(1-a\right)\left(1-a\right)}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1-a\right)}{\left(1-a\right)^2}=1\)

năm nay em lên lớp 9 anh xem xét bài em nha!!! ^.^

Dùng tính chất phân phối 

Tách  vế trái ra rồi chứng minh :

Tổng vế trái bằng 1 

Với a lớn hơn hoặc bằng 0 ; a khác 1 đó là điều kiện để phân thức tồn tại thôi

24 tháng 9 2020

1) \(VT=\frac{\sqrt{a}+\sqrt{b}}{2\left(\sqrt{a}-\sqrt{b}\right)}-\frac{\sqrt{a}-\sqrt{b}}{2\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2b}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)\(=\frac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{ab}+4b}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}\)

\(=\frac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}=\frac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}=VP\)(ĐPCM)

2) \(VT=\text{[}\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a+b-\sqrt{ab}\right)}{\left(\sqrt{a}+\sqrt{b}\right)}-\sqrt{ab}\text{]}.\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)

\(=\frac{\left(a+b-\sqrt{ab}-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}\)\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2\left(\sqrt{a}+\sqrt{b}\right)^2}{\left(a-b\right)^2}=\frac{\left(a-b\right)^2}{\left(a-b\right)^2}=1=VP\)(ĐPCM)

4) \(VT=\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)\(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)

\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a=VP\)(ĐPCM)

26 tháng 4 2015

3)\(...=\left[\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\right].\frac{1-xy}{x+xy}\)

\(\frac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}.\frac{1-xy}{x\left(1+y\right)}\)\(\frac{2\sqrt{x}+2y\sqrt{x}}{x\left(1+y\right)}=\frac{2\sqrt{x}\left(1+y\right)}{x\left(1+y\right)}=\frac{2}{\sqrt{x}}\)

29 tháng 7 2016

a, Đặt \(\sqrt[4]{a}=x;\sqrt[4]{b}=y.\)Bất đẳng thức ban đầu trở thành: \(\frac{2x^2y^2}{x^2+y^2}\le xy.\)

ta có : \(x^2+y^2\ge2xy\Rightarrow\frac{2x^2y^2}{x^2+y^2}\le\frac{2x^2y^2}{2xy}=xy.\)(đpcm ) 

dấu " = " xẩy ra khi x = y > 0 

vậy bất đăng thức ban đầu đúng. dấu " = " xẩy ra khi a = b >0