Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhìn zậy thoy chứ dễ lắm mik làm vd 2 bài còn lại bn làm có gì bí thì hỏi mik
a) biến đổi vế trái ta có : \(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)=x\left(x+2y\right)\)( = vế phải )
b) BĐVT ta có : \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2+y^2-2xy\right)\left(x^2+y^2+2xy\right)=\left(x-y\right)^2\left(x+y\right)^2\)= VP
a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
c) \(VT=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b\right)^3+3c\left(a+b\right)\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(=a^3+b^3+c^3+3ab\left(a+b\right)+3c\left(a+b\right)\left(a+b+c\right)-a^3-b^3-c^3\)
\(=3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]\)
\(=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(=3\left(a+b\right)\left(b+c\right)\left(c+a\right)=VP\)
d) \(VT=a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=VP\)
I don't now
...............
.................
\(1.a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
=\(a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
=\(a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
=\(a^4-b^4\)=\(\left(a^2-b^2\right)\left(a^2+b^2\right)\)
a) VT = a3 - 3a2b + 3ab2 - b3 + a3 + 3a2b + 3ab2 + b3
= 2a3 + 6ab2 = 2a( a2 + 3b2 ) = VP ( đpcm )
b) VP = (-a)2 - 2(-a)b + b2 = a2 + 2ab + b2 = ( a + b )2 = VT ( đpcm )
c) VP = ( a + b )3 = VT ( đpcm )
d) VP = b2 - 2ab + a2 = a2 - 2ab + b2 = ( a - b )2 = VT ( đpcm )
e) VP = ( a - b )3 = VT ( đpcm )
i) VT = a2 + 2ab + b2 + a2 - 2ab + b2 = 2a2 + 2b2 = 2( a2 + b2 ) = VP ( đpcm )
h) ( a + b + c )2 + ( a + b - c )2 + ( c + a - b )2 + ( b + c - a )2
= [ ( a + b ) + c ]2 + [ ( a + b ) - c ]2 + [ ( c + a ) - b ]2 + [ ( b + c ) - a ]2
= ( a2 + b2 + c2 + 2ab + 2bc + 2ca ) + ( a2 + b2 + c2 + 2ab - 2bc - 2ca ) + ( a2 + b2 + c2 - 2ab - 2bc + 2ca ) + ( a2 + b2 + c2 - 2ab + 2bc - 2ca ) ( Chỗ này bạn khai triển các ngoặc ra nhé )
= 4a2 + 4b2 + 4c2 = 4( a2 + b2 + c2 ) = VP ( đpcm )
g) VP = a2x2 + a2y2 + b2x2 + b2y2 - ( a2y2 - 2axby + b2x2 )
= a2x2 + a2y2 + b2x2 + b2y2 - a2y2 + 2axby - b2x2
= a2x2 + 2axby + b2y2
= ( ax + by )2 = VT ( đpcm )
Không hiểu chỗ nào thì ib nhé :D