K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2021

lên google

14 tháng 7 2018

lm ơn trả lời giùm mk đi mấy bn

Bạn ơi đề bài sai nha mik sửa lại đề bài

\(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\)

VT = \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^3\right)^2-1=x^6-1\)

VP = \(\left(x^2-1\right)\left(x^2+x+1\right)=\left(x^2\right)^3-1=x^6-1\)

Ta thấy VT = VP

=> \(\left(x^3-1\right)\left(x^3+1\right)=\left(x^2-1\right)\left(x^2+x+1\right)\) (đpcm)

20 tháng 7 2020

sử dụng thanh công cụ này

để đánh câu hỏi nha bạn

27 tháng 9 2018

\(a)\)\(VP=x^3+3x^2+2x\)

\(VP=x\left(x^2+3x+2\right)\)

\(VP=x\left[\left(x^2+x\right)+\left(2x+2\right)\right]\)

\(VP=x\left[x\left(x+1\right)+2\left(x+1\right)\right]\)

\(VP=x\left(x+1\right)\left(x+2\right)\) ( đpcm ) 

Chúc bạn học tốt ~ 

27 tháng 9 2018

a) x(x+1)(x+2)=(x2+x)(x+2)=x3+2x2+x2+2x=x3+3x2+3x

b)

(3x - 2)(4x - 5) - (2x - 1)(6x + 1) = 0

12x2 - 15x - 8x + 10 - 12x2 - 2x + 6x + 1 = 0

- 19x = - 11

x = 11/19

Câu 1:

a) Ta có: \(VT=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x^3+xy^2+x^2y+y^3\right)\)=VP(đpcm)

c) Ta có: \(VT=a\left(b+1\right)+b\left(a+1\right)\)

\(=ab+a+ab+b\)

\(=a+b+2ab\)(1)

Thay ab=1 vào biểu thức (1), ta được:

a+b+2(*)

Ta có: VP=(a+1)(b+1)=ab+a+b+1(2)

Thay ab=1 vào biểu thức (2), ta được:

1+a+b+1=a+b+2(**)

Từ (*) và (**) ta được VT=VP(đpcm)

Câu 2:

Ta có: \(\left(x-3\right)\left(x+x^2\right)+2\left(x-5\right)\left(x+1\right)-x^3=12\)

\(\Leftrightarrow x^2+x^3-3x-3x^2+2\left(x^2+x-5x-5\right)-x^3=12\)

\(\Leftrightarrow x^3-2x^2-3x+2x^2-8x-10-x^3-12=0\)

\(\Leftrightarrow-11x-22=0\)

\(\Leftrightarrow-11x=22\)

hay x=-2

Vậy: x=-2