K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

\(\left(x+a\right)\left(x+b\right)=x\left(x+b\right)+a\left(x+b\right)\)

\(=x^2+xb+ax+ab\)

\(=x^2+\left(a+b\right)x+ab\)

Áp dụng :

a/ \(\left(x+5\right)\left(x+2\right)=x^2+\left(5+2\right).x+5.2=x^2+7x+10\)

b/ \(\left(x+8\right)\left(x-3\right)=x^2+\left(8-3\right)x+8.\left(-3\right)=x^2+5x-24\)

c/ \(\left(x-7\right)\left(x-4\right)=x^2+\left[\left(-7\right)+\left(-3\right)\right]x+\left(-7\right)\left(-3\right)=x^2-10x+21\)

d/ \(\left(x-9\right)\left(x+1\right)=x^2+\left(-9+1\right)x+\left(-9\right).1=x^2-8x-9\)

30 tháng 6 2018

phân tách (x + a)( x+ b) và x^2 +( a + b )x + ab để biết được cách nó ghép

6 tháng 6 2016

a) số lẻ wa

b)(x - 1)3 - (x + 3) . (x2 - 3x +9) + 3 . (x + 2) . (x - 2) = 2

\(VT=3x-40\)

\(\Leftrightarrow3x-40=2\)

\(\Leftrightarrow3x=42\)

\(\Leftrightarrow x=14\)

6 tháng 6 2016

Ai giúp mình câu a với !!!

5 tháng 7 2016

k mình đi mình gúp cho

5 tháng 7 2016

a) (a+b)3- (a-b)3- 2ab

=a3+3a2b+3ab2+b3-(a3-3a2b+3ab2-b3)-2ab

=a3+3a2b+3ab2+b3-a3+3a2b-3ab2+b3-2ab

=2b3+6a2b-2ab

b) (x-2). (x2+2x+4) - x.(x2-1)+x+5

=x3-8-x3+x+x+5

=2x-3

 

4 tháng 6 2016

a) 3(x - 1)2 - 3x(x - 5) = 3(x2 - 2x + 1) - 3x2 + 15x = 3x2 - 6x + 3 - 3x2 + 15x = 9x + 3 = 21 => x = (21 - 3) : 9 = 18 : 9 = 2

b) 3(x + 2)2 + (2x - 1)2 - 7(x + 3)(x - 3) = 3(x2 + 4x + 4) + 4x2 - 4x + 1 - 7(x2 - 9) = 3x2 + 12x + 12 + 4x2 - 4x + 1 - 7x2 + 63

= 8x + 76 = 36 => x = (36 - 76) : 8 = -40 : 8 = -5

6 tháng 7 2017

a. \(VT=\left(x+a\right)\left(x+b\right)=x^2+ã+bx+ab=x^2+\left(a+b\right)x+ab=VP\)

B. \(VT=\left(x+a\right)\left(x+b\right)\left(x+c\right)=\left[\left(x+a\right)\left(x+b\right)\right].\left(x+c\right)\)

\(=\left[\left(x^2+\left(a+b\right)x\right)+ab\right].\left(x+c\right)=x^3+x^2c+\left(a+b\right)x^2+c\left(a+b\right)x+abx+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+bc+ca\right)x+abc=VP\)

10 tháng 11 2019

a) \(A=\left(x^2-\frac{1}{2}x\right)^2+\frac{3}{4}\left(x+\frac{2}{3}\right)^2+\frac{2}{3}>0\)

Ko biết xét khoảng:v

22 tháng 8 2016

a ) VP = \(\left(x+a\right).\left(x+b\right)=x^2+bx+ax+ab\)

     VT = \(x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\)

\(\Rightarrow VT=VP\)

b ) VP : \(\left(x+a\right).\left(x+b\right)\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\) ( Vế đầu áp dụng luôn ở câu a )

\(=x^2.x+x^2.c+bx.x+bx.c+ax.x+ax.c+ab.x+ab.c\)

\(=x^3+cx^2+bx^2+cbx+ax^2+cax+abx+abc\)

\(=x^3+\left(cx^2+bx^2+ax^2\right)+\left(cbx+cax+abx\right)+abc\)

\(=x^3+\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)

Vậy \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)

22 tháng 8 2016

a) VP =\(\left(x+a\right)\left(x+b\right)=x^2+bx+\text{ax+ab}\)

\(VT=x^2+\left(a+b\right).x+ab=x^2+ax+bx+ab\\ =>VT=VP\)

b) VP : \(\left(x+a\right).\left(x+b\right).\left(x+c\right)=\left(x^2+bx+ax+ab\right).\left(x+c\right)\)( Vế đầu áp dụng luôn ở câu a )

\(=x^2.x+x^2.c+bx.x+bx.c+\text{ax}.x+\text{ax}.c+ab.c+ab.c\\ =x^3+cx^2+bx^2-cbx+\text{ax}^2+ca.x+ab.x+abc\\ \)

\(=x^3+\left(cx^2+bx^2+\text{ax}^2\right)-\left(cbx+c\text{ax}+abx\right)+abc\\ =x^3-\left(a+b+c\right)x^2+\left(ab+ac+bc\right).x+abc\)

Vậy \(\left(x+a\right)\left(x-b\right)\left(x+c\right)=x^3+\left(a+b+c\right).x^2+\left(ab+ca+bc\right).x+abc\)