K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

Biến đổi vế trái ta có:

\(\sqrt{3+\sqrt{5}-\sqrt{13+4\sqrt{3}}}=\sqrt{3+\sqrt{5}-\sqrt{\left(2\sqrt{3}+1\right)^2}}=\sqrt{3+\sqrt{5}-2\sqrt{3}-1}=\sqrt{2+\sqrt{5}-2\sqrt{3}}\)

Đề sai 

18 tháng 9 2016

Xét tử \(2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}=2\sqrt{3+\sqrt{5-\sqrt{13+4\sqrt{3}}}}\)

\(=2\sqrt{3+\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=2\sqrt{3+\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=2\sqrt{3+\sqrt{4-2\sqrt{3}}}=2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}=2\sqrt{3+\sqrt{3}-1}\)

\(=2\sqrt{2+\sqrt{3}}=\frac{2\sqrt{4+2\sqrt{3}}}{\sqrt{2}}=\frac{2\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{2\left(\sqrt{3}+1\right)}{\sqrt{2}}=\sqrt{6}+\sqrt{2}\)

Suy ra VT = VP = 1

25 tháng 6 2017

Đáp án là : VT = VP = 1

vhuv bn hoc gioi tk mk nha

5 tháng 8 2018

a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)

5 tháng 8 2018

a)  \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)

\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)

c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)

\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)

18 tháng 9 2016

\(2\sqrt{40\sqrt{12}}-2\sqrt{\sqrt{75}}-3\sqrt{5\sqrt{48}}=2.\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)

\(=8\sqrt{5}.\sqrt{\sqrt{3}}-2\sqrt{5}.\sqrt{\sqrt{3}}-6\sqrt{5}.\sqrt{\sqrt{3}}=0\)

5 tháng 8 2016

ta tính VT ra xong rồi nói VT = VP

7 tháng 8 2019

Đặt \(A=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{13+\sqrt{4}.\sqrt{12}}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}\)

\(A=\sqrt{6+2\sqrt{5-\sqrt{12}-1}}\)

\(A=\sqrt{6+2\sqrt{4-\sqrt{12}}}\)

\(A=\sqrt{6+2\sqrt{4-\sqrt{4}.\sqrt{3}}}\)

\(A=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)

\(A=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(A=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(A=\sqrt{6+2\sqrt{3}-2}\)

\(A=\sqrt{4+2\sqrt{3}}\)

\(A=\sqrt{3+2\sqrt{3}+1}\)

\(A=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(A=1+\sqrt{3}\) (đpcm)

Vậy \(A=1+\sqrt{3}\)

Ta có :

A= \(\dfrac{2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

Đặt B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

Ta có B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}}\)

\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12}-1}}\\ =2\sqrt{3+\sqrt{4-\sqrt{12}}}\\ =2\cdot\sqrt{3+\sqrt{3-2\cdot\sqrt{3}+1}}\\ =2\cdot\sqrt{3+\sqrt{3}-1}\\ =2\cdot\sqrt{2+\sqrt{3}}\)

Thay B vào A, ta cũng có:

A=\(\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\\ =\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2\cdot\left(\sqrt{3}+1\right)}}\\ =\dfrac{\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\\ =\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}=1\)

Vậy A thuộc Z

Sửa đề: \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)

Ta có: \(\sqrt{5-2\sqrt{6}}-\sqrt{5+2\sqrt{6}}\)

\(=\sqrt{2-2\cdot\sqrt{2}\cdot\sqrt{3}+3}-\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)

\(=\left|\sqrt{2}-\sqrt{3}\right|-\left|\sqrt{2}+\sqrt{3}\right|\)

\(=\sqrt{3}-\sqrt{2}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\sqrt{3}-\sqrt{2}-\sqrt{2}-\sqrt{3}\)

\(=-2\sqrt{2}\)(đpcm)

8 tháng 10 2017

a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)