K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(\sin^4x.\sin^2x+\cos^4x.\cos^2x-\left(\sin^4x+\cos^4x+\dfrac{1}{2}\sin^4x+\dfrac{1}{2}\cos^4x-\dfrac{3}{2}\right)-1=-\sin^4x.\left(1-\sin^2x\right)-cos^4x.\left(1-\cos^2x\right)-\dfrac{1}{2}\left(\sin^4x+\cos^4x\right)+\dfrac{1}{2}=-\left(\sin^4x.\cos^2x+\cos^4x.\sin^2x\right)-\dfrac{1}{2}\left(\left(\sin^2x+\cos^2x\right)^2-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\left(\sin^2x.\cos^2x.\left(\sin^2x+\cos^2x\right)\right)-\dfrac{1}{2}.\left(1-2\sin^2x.\cos^2x\right)+\dfrac{1}{2}=-\sin^2x.\cos^2x+\sin^2x.\cos^2x-\dfrac{1}{2}+\dfrac{1}{2}=0\)

13 tháng 4 2016

Từ M kẻ MP ⊥ Ox, MQ ⊥ Oy

=> = cosα;             = 

= sinα;

Trong tam giác vuông MPO:

MP2+ PO= OM2              =>  cos2 α + sin2 α = 1

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

a)

\((\sin x+\cos x)^2=\sin ^2x+2\sin x\cos x+\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)+2\sin x\cos x=1+2\sin x\cos x\)

b)

\(\sin ^4x+\cos ^4x=\sin ^4x+2\sin ^2x\cos ^2x+\cos ^4x-2\sin ^2\cos ^2x\)

\(=(\sin ^2x+\cos ^2x)^2-2\sin ^2x\cos ^2x\)

\(=1-2\sin ^2x\cos ^2x\)

c)

\(\tan ^2x-\sin ^2x=(\frac{\sin x}{\cos x})^2-\sin ^2x\)

\(=\sin ^2x\left(\frac{1}{\cos ^2x}-1\right)=\sin ^2x. \frac{1-\cos ^2x}{\cos ^2x}=\sin ^2x.\frac{\sin ^2x}{\cos ^2x}\)

\(=\sin ^2x\left(\frac{\sin x}{\cos x}\right)^2=\sin ^2x\tan ^2x\)

AH
Akai Haruma
Giáo viên
26 tháng 10 2018

d)

\(\sin ^6x+\cos ^6x=(\sin ^2x)^3+(\cos ^2x)^3\)

\(=(\sin ^2x+\cos ^2x)(\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x)\)

\(=\sin ^4x-\sin ^2x\cos ^2x+\cos ^4x\)

\(=(\sin ^4x+\cos ^4x)-\sin ^2x\cos ^2x=1-2\sin ^2x\cos ^2x-\sin ^2x\cos ^2x\)

\(=1-3\sin ^2x\cos ^2x\) (theo kq phần b)

e)

\(\sin x\cos x(1+\tan x)(1+\cot x)=\sin x\cos x(1+\frac{\sin x}{\cos x})(1+\frac{\cos x}{\sin x})\)

\(=\sin x\cos x.\frac{\cos x+\sin x}{\cos x}.\frac{\sin x+\cos x}{\sin x}\)

\(=(\sin x+\cos x)^2=\sin ^2x+\cos ^2x+2\sin x\cos x\)

\(=1+2\sin x\cos x\)

-------------

P/s: Nói chung cứ bám vào công thức \(\sin ^2x+\cos ^2x=1\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

B=1-sin2a+cos2a

\(=\sin^2a+\cos^2a-\sin^2a+\cos^2a=2\cos^2a\)

C= 1-sina.cosa.tana

\(=1-\sin a.\cos a.\frac{\sin a}{\cos a}=1-\sin^2a=\cos^2a\)

biết có vậy thôi à

4 tháng 5 2018

\(sin^4x-cos^4x=\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=\left(sin^2x-cos^2x\right)\cdot1\)\(=1-cos^2x-cos^2x=1-2cos^2x\)

ta có công thức nhân đôi:

2 cos2x - 1 = 1 - 2 sin2x

<=> 2 cos2x = 2 - 2sin2x

=> sin4x - cos4x = 1- 2cos2x = 1- 2 + 2sin2x = -1 + 2 sin2x

???

mình nghĩ là sai đề!

in4x - cos4x = 1- 2cos2x = -1 + 2 sin2x