K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)

\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{1}\)

\(=\sqrt{n+1}-\sqrt{n}\)

Vậy đẳng thức đã được chứng minh .

Áp dụng :

\(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+....+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+.....+\sqrt{100}-\sqrt{99}\)

\(=-1+\sqrt{100}\)

\(=-1+10=9\)

1 tháng 8 2018

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}=\dfrac{\sqrt{2}-1}{2-1}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2}+\dfrac{\sqrt{4}-\sqrt{3}}{4-3}+...+\dfrac{\sqrt{100}-\sqrt{99}}{100-99}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-1=10-1=9\) Vậy , biểu thức A có giá trị nguyên .

17 tháng 7 2018

2/ \(\sqrt{4+\sqrt{4+...+\sqrt{4}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{7+\sqrt{4}}}}}=3\)

1/ Ta có:

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\left(\dfrac{n^2+n+1}{n\left(n+1\right)}\right)^2}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=99+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\dfrac{9999}{100}\)

17 tháng 7 2018

Em cảm ơn ạ

24 tháng 4 2017

Ta có: \(\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=\left(\sqrt{n+1}\right)^2-\left(\sqrt{n}\right)^2=n+1-n=1\) \(\Leftrightarrow\) \(\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\) với n là số tự nhiên

11 tháng 7 2018

b) bạn trục mẫu đi nha dựa vào hằng đẳng thức a^2 -b^2=(a-b)(a+b)

rồi bạn tính nói chung mẫu bằng -1

tính cái trên tử kết quả là 4

c) bạn dựa vào câu b .\(\dfrac{1}{\sqrt{3}}=\dfrac{2}{2\sqrt{3}}>\dfrac{2}{\sqrt{3}+\sqrt{4}}\)

từ đó suy ra B > 2A vậy B>8

21 tháng 6 2018

Cm kẹp giữa 2 số tự nhiên 10 và 11 là đc

24 tháng 9 2017

Sửa đề:

\(\sqrt{n+1}-\sqrt{n}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}\\ < =>\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=1\\ < =>n+1-n=1\\ < =>1=1\)(luôn luôn đúng)

=> đfcm

13 tháng 10 2017

biến đổi vế phải ta có :

\(\dfrac{1}{\sqrt{n+1}+\sqrt{n}}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)}=\sqrt{n+1}-\sqrt{n}\left(đpcm\right)\)

28 tháng 7 2017

\(\forall n\in N\) ta luôn có \(\dfrac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\) (*)

\(\Leftrightarrow\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)=1\)

\(\Leftrightarrow\left(n+1\right)-n=1\) (luôn đúng)

Vậy (*) được chứng minh.

Áp dụng với \(n=1;2;3;...;99\) ta có

\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{100}-\sqrt{99}\)

\(=\sqrt{100}-1=10-1=9\)

Vậy S là 1 số nguyên.

\(S=\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\\ S=\dfrac{1-\sqrt{2}}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+...+\dfrac{\sqrt{99}-\sqrt{100}}{99-100}\\ S=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\\ S=-1+\sqrt{100}=9\)