K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2015

(a+b)2

= (a+b).(a+b)

= a.a+a.b+b.a+b.b

= a2+ab+ab+b2

= a2+2ab+b2

=> đpcm

21 tháng 8 2020

Bài làm:

Ta có: \(a^2+2ab+b^2\)

\(=\left(a^2+ab\right)+\left(ab+b^2\right)\)

\(=a\left(a+b\right)+b\left(a+b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

21 tháng 8 2020

(a+b)2=(a+b)(a+b)=a2+ab+ba+b2=a2+2ab+b2

Trong SGK có ko nhỉ '-', cái này dễ mà:<

24 tháng 6 2017

a2+b2=a2+2ab+b2-2ab=a2+ab+ab+b2-2ab=(a+b)2-2ab

a

6 tháng 7 2017

Bạn ơi, câu a) phân tích vế phải ra nhé . Còn câu b) , vế phải là : ( a+ b2).( ( a+ b2 )- 2a2b- a2b) = ( a+ b)( a+ b- a2b) , dùng hđt là ra vế trái bạn nhá ^^ 

26 tháng 5 2015

(a+b)2=(a+b)(a+b)

         =a2+ab+ab+b2  

         =a2+2ab+b2

Vậy (a+b)2=a2+2ab+b2

19 tháng 6 2017

Ta có:

\(VP=4p\left(p-a\right)=2p.2p-2a.2p\)(1)

Thay \(a+b+c=2p\) vào (1) ta có:

\(\left(a+b+c\right)^2-2a.\left(a+b+c\right)\)

\(=a^2+b^2+c^2+2ab+2ac+2bc-2a^2-2ab-2ac\)

\(=-a^2+b^2+c^2+2bc=VT\)

Vậy \(2ab+b^2+c^2-a^2=4p\left(p-a\right)\)(đpcm)

Chúc bạn học tốt!!!

19 tháng 6 2017

Ta có:a+b+c=2p=>b+c=2p-a=>b+c-a=2p-2a

Ta lại có:4p(p-a)=2p(2p-2a)=2(a+b+c)(b+c-a)=ab+ac-a2+b2+bc-ab+bc+c2-ac

=2ab+b2+c2-a2(đpcm)

1 tháng 9 2019

A2 + 2AB + B= ( A + B )2

A2 - 2AB + B2 = ( A - B ) 2

( A - B ) ( A + B ) = A2 - B2

~ Hok tốt ~
 

5 tháng 4 2020

a, Ta có : BĐT \(a^2+b^2\ge2ab\) = BĐT cauchuy .

-> Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\\c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\end{matrix}\right.\)

- Cộng 2 bpt lại ta được :

\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left(\left(ab\right)^2+\left(cd\right)^2\right)\)

- Mà \(\left(ab\right)^2+\left(cd\right)^2\ge2abcd\)

=> \(a^4+b^4+c^4+d^4\ge2.2abcd=4abcd\)

b, CMTT câu 1 .

- Áp dụng BĐT cauchuy ta được :

\(\left\{{}\begin{matrix}a^2+1\ge2a\\b^2+1\ge2b\\c^2+1\ge2c\end{matrix}\right.\)

- Nhân 3 bpt trên lại ta được :

\(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge2.2.2abc=8abc\)

31 tháng 7 2019

\(a,A=4x-x^2+3\)

       \(=-\left(x^2-4x+4\right)+7\)

       \(=-\left(x-2\right)^2+7\le7\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-2\right)^2=0\Leftrightarrow x=2\) 

Vậy......

\(b,B=4-x^2+2x\)

      \(=-\left(x^2-2x+1\right)+5\)

      \(=-\left(x-1\right)^2+5\le5\forall x\)

Dấu"=" xảy ra<=> \(-\left(x-1\right)^2=0\Leftrightarrow x=1\)

Vậy......

31 tháng 7 2019

B2:

a) ta có: \(a^2+b^2-2ab\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\forall a;b\) (luôn đúng)

\(\Rightarrowđpcm\)

b) Ta có: \(a^2+b^2\ge-2ab\)

     \(\Rightarrow\left(a+b\right)^2\ge0\forall a;b\) (luôn đúng)

   \(\Rightarrowđpcm\)

Em thử nhé !

Bài 1 :

a) \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2.x.2+2^2\right)+7\)

\(=-\left(x-2\right)^2+7\le7\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy : \(A_{max}=7\Leftrightarrow x=2\)

b) \(B=4-x^2+2x=-\left(x^2-2x-4\right)=-\left(x^2-2.x.1+1^2\right)+5\)

\(\Leftrightarrow B=-\left(x-1\right)^2+5\le5\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy : \(B_{max}=5\Leftrightarrow x=1\)