K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2024

SOS 

a(b-c)-a(b+d)=-a(c+d)

Còn mấy bài mình ko làm được nữa tí mình gửi sau

 a) Vế trái: Dùng quy tắc chuyển vế

a - b -a  - b + 2a - b - 2a + 3b

= (a-a + 2a - 2a) + (-b - b - b + 3b) = 0

Mà Vế phải = 0

Suy ra hằng đẳng thức đúng

b) Tương tự: Vế trái

a + b - c - a +b - c + b +c - a - b + a + c

= (a - a -a + a) + (b + b + b - b ) + (-c -c +c + c) =2b

Mà vế phải = 2b

Suy ra hằng đẳng thức đúng :D

11 tháng 11 2015

a. VT:(x-y)-(x-z)

= x-y-x+z

= z-y

VP:(z+x)-(y+x)

=z+x-y-x

=z-y

=> VT=VP => đpcm.

b. VT:(x-y+z)-(y+z-x)-(x-y)

= x-y+z-y-z+x-x+y

= x-y

VP:(z-y)-(z-x)

= z-y-z+x

= x-y

=> VT=VP => đpcm.

c. VT: a(b+c)-b(a-c)

=ab+ac-ab+bc

= ac+bc

VP: (a+b)c

= ac+bc

=> VT=VP => đpcm.

d. VT: a(b-c)-a(b+d)

= ab-ac-ab-ad

= -ac-ad

VP: -a(c+d)

= -ac-ad 

=> VT=VP => đpcm

tương tự...

11 tháng 4 2017

a) Giải:

Ta có:

\(ab-ac+bc-c^2=-1\)

\(\Rightarrow a\left(b-c\right)+c\left(b-c\right)=-1\)

\(\Rightarrow\left(b-c\right)\left(a+c\right)=-1\)

Suy ra trong hai thừa số \(\left(b-c\right);\left(a+c\right)\) có một thừa số bằng \(1\)

Thừa số kia bằng \(-1\), nghĩa là chúng đối nhau

\(\Rightarrow b-c=-\left(a+c\right)\) Hay \(b-c=-a-c\)

Suy ra \(b=-a\) tức \(a\)\(b\) là hai số đối nhau

Vậy \(a\)\(b\) là hai số đối nhau (Đpcm)

b) Giải:

Ta có:

Từ \(a+b=c+d\Rightarrow d=a+b-c\)

\(ab\) là số liền sau của \(cd\) nên \(ab-cd=1\)

\(\Rightarrow ab-c\left(a+b-c\right)=1\)

\(\Rightarrow ab-ac-bc+c^2=1\)

\(\Rightarrow a\left(b-c\right)-c\left(b-c\right)=1\)

\(\Rightarrow\left(b-c\right)\left(a-c\right)=1\)

Suy ra \(a-c=b-c\) (vì cùng bằng \(1\) hoặc \(-1\))

Hay \(a=b\) (Đpcm)

12 tháng 5 2017

bài này tớ giải được nhung a,b,c,d\(\in\)N*

5 tháng 7 2019

Đâu chia hết cho 2 đâu.

5 tháng 7 2019

a=b=c=d=1 thì sao chia hết cho 2?

29 tháng 6 2015

1.a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d)

Vậy a(b-c)-a(b+d)=-a(c+d)

2)(a+b)(c+d)-(a+d)(b+c)=ac+ad+bc+bd-ab-ac-bd-dc=ad+bc-ab-cd=a(d-b)-c(d-b)=(a-c)(d-b)

Vậy (a+b)(c+d)-(a+d)(b+c)=(a-c)(d-b)

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

b) Ta có \(\frac{a}{b}=\frac{c}{d}\)=> \(\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)